IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v195y2018icp154-171.html
   My bibliography  Save this article

Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM

Author

Listed:
  • Ojeda, Jonathan J.
  • Volenec, Jeffrey J.
  • Brouder, Sylvie M.
  • Caviglia, Octavio P.
  • Agnusdei, Mónica G.

Abstract

The Agricultural Production Systems Simulator (APSIM) is a key tool to identify agricultural management practices seeking to simultaneously optimize agronomic productivity and input use efficiencies. The aims of this study were to validate APSIM for prediction of stover and grain yield of corn in four contrasting soils with varied N fertilizer applications (156–269kgNha−1) and to predict timing and volume from artificial subsurface drains in continuous corn and corn-soybean rotations in a silty clay loam soil at West Lafayette, IN. The APSIM validation was carried-out using a long-term dataset of corn stover and grain yields from the North Central Region of IN. The CCC (Concordance Correlation Coefficient) and SB (Simulation Bias) were used to statistically evaluate the model performance. The CCC integrates precision through Pearson’s correlation coefficient and accuracy by bias, and SB indicates the bias of the simulation from the measurement. The model demonstrated very good (CCC=0.96; SB=0%) and satisfactory (CCC=0.85; SB=2%) ability to simulate stover and grain yield, respectively. Grain yield was better predicted in continuous corn (CCC=0.73–0.91; SB=19–21%) than in corn-soybean rotations (CCC=0.56–0.63; SB=17–18%), while stover yield was well predicted in both crop rotations (CCC=0.85–0.98; SB=1–17%). The model demonstrated acceptable ability to simulate annual subsurface drainage in both rotations (CCC=0.63–0.75; SB=2–37%) with accuracy being lower in the continuous corn system than in corn-soybean rotation system (CCC=0.61-0.63; SB=9–12%). Daily subsurface drainage events were well predicted by APSIM during late spring and summer when crop water use was high, but under-predicted during fall, winter and early spring when evapotranspiration was low. Occasional flow events occurring in summer when soils were not saturated were not predicted by APSIM and may represent preferential flow paths currently not represented in the model. APSIM is a promising tool for simulating yield and water losses for corn-based cropping systems in north central Indiana US.

Suggested Citation

  • Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
  • Handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:154-171
    DOI: 10.1016/j.agwat.2017.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piñeiro, Gervasio & Perelman, Susana & Guerschman, Juan P. & Paruelo, José M., 2008. "How to evaluate models: Observed vs. predicted or predicted vs. observed?," Ecological Modelling, Elsevier, vol. 216(3), pages 316-322.
    2. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    3. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    4. Unknown, 2004. "Modelling Nutrient Management in Tropical Cropping Systems," ACIAR Proceedings Series 135389, Australian Centre for International Agricultural Research.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    6. Hanson, J. D. & Ahuja, L. R. & Shaffer, M. D. & Rojas, K. W. & DeCoursey, D. G. & Farahani, H. & Johnson, K., 1998. "RZWQM: Simulating the effects of management on water quality and crop production," Agricultural Systems, Elsevier, vol. 57(2), pages 161-195, June.
    7. Persson, Tomas & Garcia y Garcia, Axel & Paz, Joel & Jones, Jim & Hoogenboom, Gerrit, 2009. "Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices," Agricultural Systems, Elsevier, vol. 100(1-3), pages 11-21, April.
    8. Garrison, M. V. & Batchelor, W. D. & Kanwar, R. S. & Ritchie, J. T., 1999. "Evaluation of the CERES-Maize water and nitrogen balances under tile-drained conditions," Agricultural Systems, Elsevier, vol. 62(3), pages 189-200, December.
    9. Luo, W. & Sands, G.R. & Youssef, M. & Strock, J.S. & Song, I. & Canelon, D., 2010. "Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII," Agricultural Water Management, Elsevier, vol. 97(3), pages 389-398, March.
    10. Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
    11. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    12. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    13. Wallander, Steven & Claassen, Roger & Nickerson, Cynthia J., 2011. "The Ethanol Decade: An Expansion of U.S. Corn Production, 2000-09," Economic Information Bulletin 117982, United States Department of Agriculture, Economic Research Service.
    14. Tedeschi, Luis Orlindo, 2006. "Assessment of the adequacy of mathematical models," Agricultural Systems, Elsevier, vol. 89(2-3), pages 225-247, September.
    15. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    16. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chapagain, Ranju & Huth, Neil & Remenyi, Tomas A. & Mohammed, Caroline L. & Ojeda, Jonathan J., 2023. "Assessing the effect of using different APSIM model configurations on model outputs," Ecological Modelling, Elsevier, vol. 483(C).
    2. Baum, Mitchell E. & Sawyer, John E. & Nafziger, Emerson D. & Huber, Isaiah & Thorburn, Peter J. & Castellano, Michael J. & Archontoulis, Sotirios V., 2023. "Evaluating and improving APSIM's capacity in simulating long-term corn yield response to nitrogen in continuous- and rotated-corn systems," Agricultural Systems, Elsevier, vol. 207(C).
    3. Yang, Xuan & Jia, Pengfei & Hou, Qingqing & Zhu, Min, 2023. "Quantitative sensitivity of crop productivity and water productivity to precipitation during growth periods in the Agro-Pastoral Ecotone of Shanxi Province, China, based on APSIM," Agricultural Water Management, Elsevier, vol. 283(C).
    4. Xu, Junzeng & Bai, Wenhuan & Li, Yawei & Wang, Haiyu & Yang, Shihong & Wei, Zheng, 2019. "Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 289-297.
    5. Videla-Mensegue, H. & Caviglia, O.P. & Sadras, V.O., 2022. "Functional crop types are more important than diversity for the productivity, profit and risk of crop sequences in the inner Argentinean Pampas," Agricultural Systems, Elsevier, vol. 196(C).
    6. Fang Yin & Ziyue Jin & Jiazheng Zhu & Lei Liu & Danyun Zhao, 2021. "Spatial Assessment of Jerusalem Artichoke’s Potential as an Energy Crop in the Marginal Land of the Shaanxi Province, China," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    7. Singh, Shailendra & Bhattarai, Rabin & Negm, Lamyaa M. & Youssef, Mohamed A. & Pittelkow, Cameron M., 2020. "Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    3. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    4. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    5. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    7. Youssef, Mohamed A. & Liu, Yu & Chescheir, George M. & Skaggs, R. Wayne & Negm, Lamyaa M., 2021. "DRAINMOD modeling framework for simulating controlled drainage effect on lateral seepage from artificially drained fields," Agricultural Water Management, Elsevier, vol. 254(C).
    8. Momm, Henrique G. & Bingner, Ronald L. & Moore, Katy & Herring, Glenn, 2022. "Integrated surface and groundwater modeling to enhance water resource sustainability in agricultural watersheds," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Della Nave, Facundo N. & Ojeda, Jonathan J. & Irisarri, J. Gonzalo N. & Pembleton, Keith & Oyarzabal, Mariano & Oesterheld, Martín, 2022. "Calibrating APSIM for forage sorghum using remote sensing and field data under sub-optimal growth conditions," Agricultural Systems, Elsevier, vol. 201(C).
    10. Lutz, Femke & Stoorvogel, Jetse J. & Müller, Christoph, 2019. "Options to model the effects of tillage on N2O emissions at the global scale," Ecological Modelling, Elsevier, vol. 392(C), pages 212-225.
    11. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    12. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    13. Correndo, Adrian A. & Hefley, Trevor J. & Holzworth, Dean P. & Ciampitti, Ignacio A., 2021. "Revisiting linear regression to test agreement in continuous predicted-observed datasets," Agricultural Systems, Elsevier, vol. 192(C).
    14. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    15. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    16. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.
    17. Shailendra Singh & Soonho Hwang & Jeffrey G. Arnold & Rabin Bhattarai, 2023. "Evaluation of Agricultural BMPs’ Impact on Water Quality and Crop Production Using SWAT+ Model," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
    18. Youssef, Mohamed A. & Abdelbaki, Ahmed M. & Negm, Lamyaa M. & Skaggs, R.Wayne & Thorp, Kelly R. & Jaynes, Dan B., 2018. "DRAINMOD-simulated performance of controlled drainage across the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 197(C), pages 54-66.
    19. Gupta, Rishabh & Bhattarai, Rabin & Coppess, Jonathan W. & Jeong, Hanseok & Ruffatti, Michael & Armstrong, Shalamar D., 2022. "Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:154-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.