IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v184y2017icp9-18.html
   My bibliography  Save this article

Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards

Author

Listed:
  • Hernandez-Santana, V.
  • Fernández, J.E.
  • Cuevas, M.V.
  • Perez-Martin, A.
  • Diaz-Espejo, A.

Abstract

Regulated deficit irrigation (RDI) reduces leaf area, which is advantageous for fruit tree orchards with high plant densities to increase their long-term productive life. However, RDI also decreases fruit yield. To establish an optimum irrigation level to control tree vegetative growth without severely penalizing fruit yield it is necessary to analyze the effect of the limited photosynthesis produced by RDI on the carbon allocation patterns between yield and tree vegetative growth, which are not fully established in olive. Thus, our main objective was to unravel the relationships between limited photosynthesis and tree growth as well as yield to establish an optimum level of deficit irrigation. We conducted the research during four irrigation seasons in a super-high density olive orchard using four irrigation treatments: a full irrigation treatment (control) and three RDI treatments with increasing levels of water reduction scaled to replacing 60%, 45% and 30% of the irrigation needs. The plant water stress produced by RDI reduced photosynthesis, which resulted in a significant decline of leaf area. In contrast, neither single fruit weight nor total fruit yield normalized by leaf area was adversely affected by RDI. We found significant and direct relationships between photosynthesis and leaf area (r2=0.90, p<0.0001) as well as between leaf area and yield (r2=0.55, p<0.05). Thus, we conclude that while leaf area is determined mainly by photosynthesis, fruit yield is largely determined by leaf area, and thus, photosynthesis and leaf area are the main variables to control tree growth without curtailing the yield. The lowest RDI levels (30% and 45%) lead to greater water savings than 60%, with a similar effect on leaf area and fruit yield, and thus, any of these lowest irrigation strategies is preferred to achieve the best balance between crop water consumption and fruit yield.

Suggested Citation

  • Hernandez-Santana, V. & Fernández, J.E. & Cuevas, M.V. & Perez-Martin, A. & Diaz-Espejo, A., 2017. "Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 9-18.
  • Handle: RePEc:eee:agiwat:v:184:y:2017:i:c:p:9-18
    DOI: 10.1016/j.agwat.2016.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416305157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    2. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    3. Diaz-Espejo, A. & Buckley, T.N. & Sperry, J.S. & Cuevas, M.V. & de Cires, A. & Elsayed-Farag, S. & Martin-Palomo, M.J. & Muriel, J.L. & Perez-Martin, A. & Rodriguez-Dominguez, C.M. & Rubio-Casal, A.E., 2012. "Steps toward an improvement in process-based models of water use by fruit trees: A case study in olive," Agricultural Water Management, Elsevier, vol. 114(C), pages 37-49.
    4. Moriana, Alfonso & Perez-Lopez, David & Gomez-Rico, Aurora & Salvador, Maria de los Desamparados & Olmedilla, Nicolas & Ribas, Francisco & Fregapane, Giuseppe, 2007. "Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics," Agricultural Water Management, Elsevier, vol. 87(2), pages 171-179, January.
    5. Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
    6. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.
    7. Rallo, Giovanni & Provenzano, Giuseppe, 2013. "Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions," Agricultural Water Management, Elsevier, vol. 120(C), pages 79-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Guimin & Wang, Yujia & Hu, Jiaqi & Wang, Shujun & Zhang, Yan & Wu, Qi & Chi, Daocai, 2021. "Effects of Supplemental Irrigation on Water and Nitrogen Use, Yield, and Kernel Quality of Peanut under Nitrogen-Supplied Conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Li, Zhiming & Duan, Songpo & Ouyang, Xin & Song, Shijie & Chen, Diwen & Fan, Xianting & Ding, Hanqing & Shen, Hong, 2024. "Coupled soil moisture management and alginate oligosaccharide strategies enhance citrus orchard production, water and potassium use efficiency by improving the rhizosphere soil environment," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Lijian Zheng & Juanjuan Ma & Xihuan Sun & Xianghong Guo, 2022. "Improving Leaf Photosynthetic Performance of Apple through a Novel Root-Zone Irrigation in the Loess Plateau," Agriculture, MDPI, vol. 12(9), pages 1-14, September.
    5. Khozaei, Maryam & Kamgar Haghighi, Ali Akbar & Zand Parsa, Shahrokh & Sepaskhah, Ali Reza & Razzaghi, Fatemeh & Yousefabadi, Vali-allah & Emam, Yahya, 2020. "Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Zare Abyaneh, Hamid & Jovzi, Mehdi & Albaji, Mohammad, 2017. "Effect of regulated deficit irrigation, partial root drying and N-fertilizer levels on sugar beet crop (Beta vulgaris L.)," Agricultural Water Management, Elsevier, vol. 194(C), pages 13-23.
    7. Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Fernandes, Rafael Dreux Miranda & Cuevas, Maria Victoria & Diaz-Espejo, Antonio & Hernandez-Santana, Virginia, 2018. "Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard," Agricultural Water Management, Elsevier, vol. 210(C), pages 32-40.
    9. Antonio Alberto Rodríguez Sousa & Jesús M. Barandica & Alejandro Rescia, 2019. "Ecological and Economic Sustainability in Olive Groves with Different Irrigation Management and Levels of Erosion: A Case Study," Sustainability, MDPI, vol. 11(17), pages 1-20, August.
    10. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    11. Hong, Tingting & Cai, Zelin & Li, Rui & Liu, Jiecheng & Li, Jinglai & Wang, Zheng & Zhang, Zhi, 2022. "Effects of water and nitrogen coupling on watermelon growth, photosynthesis and yield under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 259(C).
    12. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    2. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    3. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    4. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Fernandes, Rafael Dreux Miranda & Cuevas, Maria Victoria & Diaz-Espejo, Antonio & Hernandez-Santana, Virginia, 2018. "Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard," Agricultural Water Management, Elsevier, vol. 210(C), pages 32-40.
    6. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    8. S. M. Alfieri & M. Riccardi & M. Menenti & A. Basile & A. Bonfante & F. Lorenzi, 2019. "Adaptability of global olive cultivars to water availability under future Mediterranean climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 435-466, March.
    9. Egea, Gregorio & Diaz-Espejo, Antonio & Fernández, José E., 2016. "Soil moisture dynamics in a hedgerow olive orchard under well-watered and deficit irrigation regimes: Assessment, prediction and scenario analysis," Agricultural Water Management, Elsevier, vol. 164(P2), pages 197-211.
    10. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    12. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    13. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    14. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    15. L. Brilli & E. Lugato & M. Moriondo & B. Gioli & P. Toscano & A. Zaldei & L. Leolini & C. Cantini & G. Caruso & R. Gucci & P. Merante & C. Dibari & R. Ferrise & M. Bindi & S. Costafreda-Aumedes, 2019. "Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 467-491, March.
    16. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    17. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    18. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    19. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:184:y:2017:i:c:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.