IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v183y2017icp123-135.html
   My bibliography  Save this article

A software architecture based on FIWARE cloud for Precision Agriculture

Author

Listed:
  • López-Riquelme, J.A.
  • Pavón-Pulido, N.
  • Navarro-Hellín, H.
  • Soto-Valles, F.
  • Torres-Sánchez, R.

Abstract

Using suitable information storage, management and processing resources is essential when Precision Agriculture-based applications are developed. Nowadays, traditional client-server paradigm is useful but it might not be enough for this purpose. The amount of data that could be stored and processed, and the need of generating complex knowledge and rules that allow stakeholders to take appropriate decisions related to crop optimization are leading researchers to pay attention to new solutions based on designing software architectures in the Cloud. This paper demonstrates that using cloud services in the agronomic context could be considered as highly beneficial. In particular, the used cloud provider is FIWARE, since it provides open source and free development modules, and even, several enablers for agriculture. An application has been developed by using the FIWARE components, and it has been validated in real crops located in a semiarid area of the South of Spain with the aim of reducing the amount of water necessary for irrigation tasks. The advantages of using FIWARE, opposite to the use of traditional systems, are properly analysed and highlighted. In addition, a discussion that emphasizes the advantages of using FIWARE instead of other well-known cloud providers is also presented.

Suggested Citation

  • López-Riquelme, J.A. & Pavón-Pulido, N. & Navarro-Hellín, H. & Soto-Valles, F. & Torres-Sánchez, R., 2017. "A software architecture based on FIWARE cloud for Precision Agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 123-135.
  • Handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:123-135
    DOI: 10.1016/j.agwat.2016.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416304061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De la Rosa, JM. & Conesa, MR. & Domingo, R. & Aguayo, E. & Falagán, N. & Pérez-Pastor, A., 2016. "Combined effects of deficit irrigation and crop level on early nectarine trees," Agricultural Water Management, Elsevier, vol. 170(C), pages 120-132.
    2. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    3. Morillo, J. García & Martín, M. & Camacho, E. & Díaz, J.A. Rodríguez & Montesinos, P., 2015. "Toward precision irrigation for intensive strawberry cultivation," Agricultural Water Management, Elsevier, vol. 151(C), pages 43-51.
    4. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    5. Oates, M.J. & de León, A.L. Vázquez & Intrigliolo, D.S. & Martínez, J.M. Molina & Ruiz-Canales, A., 2015. "Evaluation of an experimental system of soil moisture registration for irrigation management in potted vineyard (Vitis vinifera L. CV Bobal) of multi-depth temperature compensation based in resistivit," Agricultural Water Management, Elsevier, vol. 151(C), pages 126-135.
    6. López, Juan A. & Navarro, H. & Soto, F. & Pavón, N. & Suardíaz, J. & Torres, R., 2015. "GAIA2: A multifunctional wireless device for enhancing crop management," Agricultural Water Management, Elsevier, vol. 151(C), pages 75-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Krunal K. Punjani & Kala Mahadevan & Angappa Gunasekaran & V. V. Ravi Kumar & Sujata Joshi, 2023. "Cloud computing in agriculture: a bibliometric and network visualization analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3849-3883, August.
    3. Ruth Cordova-Cardenas & Luis Emmi & Pablo Gonzalez-de-Santos, 2023. "Enabling Autonomous Navigation on the Farm: A Mission Planner for Agricultural Tasks," Agriculture, MDPI, vol. 13(12), pages 1-19, November.
    4. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Emin Guresci & Bedir Tekinerdogan & Önder Babur & Qingzhi Liu, 2024. "Feasibility of Low-Code Development Platforms in Precision Agriculture: Opportunities, Challenges, and Future Directions," Land, MDPI, vol. 13(11), pages 1-31, October.
    6. Luis Emmi & Roemi Fernández & Pablo Gonzalez-de-Santos & Matteo Francia & Matteo Golfarelli & Giuliano Vitali & Hendrik Sandmann & Michael Hustedt & Merve Wollweber, 2023. "Exploiting the Internet Resources for Autonomous Robots in Agriculture," Agriculture, MDPI, vol. 13(5), pages 1-22, May.
    7. Gaetano Rocco & Claudia Pipino & Claudio Pagano, 2023. "An Overview of Urban Mobility: Revolutionizing with Innovative Smart Parking Systems," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    8. Siva Rama Krishnan & M. K. Nallakaruppan & Rajeswari Chengoden & Srinivas Koppu & M. Iyapparaja & Jayakumar Sadhasivam & Sankaran Sethuraman, 2022. "Smart Water Resource Management Using Artificial Intelligence—A Review," Sustainability, MDPI, vol. 14(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Oates, M.J. & Fernández-López, A. & Ferrández-Villena, M. & Ruiz-Canales, A., 2017. "Temperature compensation in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 86-93.
    3. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    4. Asmaa Mourhir & Elpiniki I. Papageorgiou & Konstantinos Kokkinos & Tajjeeddine Rachidi, 2017. "Exploring Precision Farming Scenarios Using Fuzzy Cognitive Maps," Sustainability, MDPI, vol. 9(7), pages 1-23, July.
    5. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    6. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    7. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Cáceres, Rafaela & Pol, Enric & Narváez, Lola & Puerta, Anna & Marfà, Oriol, 2017. "Web app for real-time monitoring of the performance of constructed wetlands treating horticultural leachates," Agricultural Water Management, Elsevier, vol. 183(C), pages 177-185.
    9. López, Juan A. & Navarro, H. & Soto, F. & Pavón, N. & Suardíaz, J. & Torres, R., 2015. "GAIA2: A multifunctional wireless device for enhancing crop management," Agricultural Water Management, Elsevier, vol. 151(C), pages 75-86.
    10. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    11. Gavilan, Pedro & Higueras, José L. & Lozano, David & Ruiz, Natividad, 2024. "The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops," Agricultural Water Management, Elsevier, vol. 292(C).
    12. Castellanos, M.T. & Cartagena, M.C. & Requejo, M.I. & Arce, A. & Cabello, M.J. & Ribas, F. & Tarquis, A.M., 2016. "Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions," Agricultural Water Management, Elsevier, vol. 170(C), pages 81-90.
    13. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    14. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    16. M. Safdar Munir & Imran Sarwar Bajwa & M. Asif Naeem & Bushra Ramzan, 2018. "Design and Implementation of an IoT System for Smart Energy Consumption and Smart Irrigation in Tunnel Farming," Energies, MDPI, vol. 11(12), pages 1-18, December.
    17. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    18. Oates, M.J. & Ramadan, K. & Molina-Martínez, J.M. & Ruiz-Canales, A., 2017. "Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 41-48.
    19. Garrigós, J. & Molina, J.M. & Alarcón, M. & Chazarra, J. & Ruiz-Canales, A. & Martínez, J.J., 2017. "Platform for the management of hydraulic chambers based on mobile devices and Bluetooth Low-Energy motes," Agricultural Water Management, Elsevier, vol. 183(C), pages 169-176.
    20. Hilman Syaeful Alam & Demi Soetraprawata & Bahrudin & Triya Haiyunnisa & Taufik Ibnu Salim & Aris Munandar & Dika Setiawan, 2016. "Design of Stand-Alone Irrigation System on Strawberry Cultivation Powered by Wind Turbine and Photovoltaics," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 2(5), pages 154-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:123-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.