Continuous variation of wind drift and evaporation losses under a linear move irrigation system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2016.12.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Uddin, J. & Hancock, N.H. & Smith, R.J. & Foley, J.P., 2013. "Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology," Agricultural Water Management, Elsevier, vol. 116(C), pages 89-100.
- Liu, Hai-Jun & Kang, Yaohu, 2006. "Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 3-19, July.
- Luz, P.B. & Heermann, D., 2005. "A statistical approach to estimating runoff in center pivot irrigation with crust conditions," Agricultural Water Management, Elsevier, vol. 72(1), pages 33-46, March.
- Yazar, Attila, 1984. "Evaporation and drift losses from sprinkler irrigation systems under various operating conditions," Agricultural Water Management, Elsevier, vol. 8(4), pages 439-449, February.
- Ortíz, J.N. & Tarjuelo, J.M. & de Juan, J.A., 2009. "Characterisation of evaporation and drift losses with centre pivots," Agricultural Water Management, Elsevier, vol. 96(11), pages 1541-1546, November.
- Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
- Dechmi, F. & Playan, E. & Faci, J. M. & Tejero, M. & Bercero, A., 2003. "Analysis of an irrigation district in northeastern Spain: II. Irrigation evaluation, simulation and scheduling," Agricultural Water Management, Elsevier, vol. 61(2), pages 93-109, June.
- Playan, E. & Garrido, S. & Faci, J.M. & Galan, A., 2004. "Characterizing pivot sprinklers using an experimental irrigation machine," Agricultural Water Management, Elsevier, vol. 70(3), pages 177-193, December.
- Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
- Silva, Luis Leopoldo, 2006. "The effect of spray head sprinklers with different deflector plates on irrigation uniformity, runoff and sediment yield in a Mediterranean soil," Agricultural Water Management, Elsevier, vol. 85(3), pages 243-252, October.
- Abo-Ghobar, Hussein M., 1992. "Losses from low-pressure center-pivot irrigation systems in a desert climate as affected by nozzle height," Agricultural Water Management, Elsevier, vol. 21(1-2), pages 23-32, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Koprda, Š. & Magdin, M. & Vanek, E. & Balog, Z., 2017. "A Low Cost Irrigation System with Raspberry Pi – Own Design and Statistical Evaluation of Efficiency," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(2), June.
- Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
- Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
- Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
- Coelho, Rubens Duarte & Almeida, Alex Nunes de & Costa, Jéfferson de Oliveira & Pereira, Diego José de Sousa, 2022. "Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water," Agricultural Water Management, Elsevier, vol. 263(C).
- Sarwar, Abid & Peters, R. Troy & Shafeeque, Muhammad & Mohamed, Abdelmoneim & Arshad, Arfan & Ullah, Ikram & Saddique, Naeem & Muzammil, Muhammad & Aslam, Rana Ammar, 2021. "Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques," Agricultural Water Management, Elsevier, vol. 258(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
- Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
- Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
- Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
- Uddin, J. & Smith, R.J. & Hancock, N.H. & Foley, J.P., 2013. "Evaporation and sapflow dynamics during sprinkler irrigation of cotton," Agricultural Water Management, Elsevier, vol. 125(C), pages 35-45.
- Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
- Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Sanchez, I. & Faci, J.M. & Zapata, N., 2011. "The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers," Agricultural Water Management, Elsevier, vol. 102(1), pages 13-24.
- Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
- Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
- Salvador, R. & Latorre, B. & Paniagua, P. & Playán, E., 2011. "Farmers’ scheduling patterns in on-demand pressurized irrigation," Agricultural Water Management, Elsevier, vol. 102(1), pages 86-96.
- Sarwar, Abid & Peters, R. Troy & Shafeeque, Muhammad & Mohamed, Abdelmoneim & Arshad, Arfan & Ullah, Ikram & Saddique, Naeem & Muzammil, Muhammad & Aslam, Rana Ammar, 2021. "Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques," Agricultural Water Management, Elsevier, vol. 258(C).
- F. Carrión & J. Montero & J. Tarjuelo & M. Moreno, 2014. "Design of Sprinkler Irrigation Subunit of Minimum Cost with Proper Operation. Application at Corn Crop in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5073-5089, November.
- Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
- Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
- Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
- Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
- Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
- Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
- Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
More about this item
Keywords
Wind drift; Evaporation loss; Sprinkler irrigation; Discharge efficiency; Weather parameters;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:182:y:2017:i:c:p:39-54. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.