IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip1p46-57.html
   My bibliography  Save this article

Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions

Author

Listed:
  • Pérez-Pérez, J.G.
  • Robles, J.M.
  • García-Sánchez, F.
  • Botía, P.

Abstract

The physiological and agronomic responses to two irrigation strategies - regulated saline irrigation (RSI) and regulated deficit irrigation (RDI), intended to confront water restriction - were compared in 15-year-old ‘Fino 49’ lemon trees (Citrus limon (L.) Burm. fil.) grafted on Citrus macrophylla Wester. Three independent treatments were applied: Control (100% ETc, non-saline water); RDI (25% ETc, non-saline water) and RSI (145% ETc, saline water—40mM NaCl). The RDI and RSI treatments were maintained along the crop season except during the high evapotranspiration (ET0) period (corresponding to phase II of fruit growth—cell elongation), when the irrigation dose applied was 100% ETc, with non-saline water. The application of these irrigation strategies produced fresh water savings of 31.5% and 39% for the RDI and RSI treatments, respectively. The use of saline water during the stress periods in RSI trees did not affect the plant water status but decreased leaf photosynthesis, due to high leaf Cl− accumulation, and altered the leaf mineral nutrition; whereas, in RDI trees, the soil water deficit affected negatively the plant water status and, in consequence, the gas exchange parameters. In RSI trees, the cumulative salt stress decreased yield much more than vegetative growth, while in RDI trees the yield and vegetative growth reductions were related to the irrigation water savings. The total production was affected similarly by both treatments, but the yield reduction was greater in RSI than in RDI trees in the second year. Fruit quality was not affected significantly by RSI but the effects of RDI delayed fruit maturation, based on the smaller fruit diameter, lower juice content and higher titratable acidity and total soluble solids relative to the fruits of control trees. Therefore, based on these results, RDI would be the best irrigation strategy for a long water restriction period, while RSI could be successful for a period of not more than one year.

Suggested Citation

  • Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:46-57
    DOI: 10.1016/j.agwat.2015.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
    2. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    3. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    4. Treeby, M.T. & Henriod, R.E. & Bevington, K.B. & Milne, D.J. & Storey, R., 2007. "Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 24-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    4. Zhu, Mengjie & Wang, Quanjiu & Sun, Yan & Zhang, Jihong, 2021. "Effects of oxygenated brackish water on germination and growth characteristics of wheat," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    2. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    3. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    4. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    5. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    6. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
    7. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    8. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    11. García-Tejero, I. & Jiménez-Bocanegra, J.A. & Martínez, G. & Romero, R. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]," Agricultural Water Management, Elsevier, vol. 97(5), pages 614-622, May.
    12. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    13. Hasan Zabihi & Mohsen Alizadeh & Philip Kibet Langat & Mohammadreza Karami & Himan Shahabi & Anuar Ahmad & Mohamad Nor Said & Saro Lee, 2019. "GIS Multi-Criteria Analysis by Ordered Weighted Averaging (OWA): Toward an Integrated Citrus Management Strategy," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    14. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    16. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    17. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    18. Said A. Hamido & Kelly T. Morgan, 2021. "The Effect of Irrigation Rate on the Water Relations of Young Citrus Trees in High-Density Planting," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    19. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    20. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:46-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.