IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v133y2014icp44-54.html
   My bibliography  Save this article

Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions

Author

Listed:
  • Pérez-Pérez, J.G.
  • Robles, J.M.
  • Botía, P.

Abstract

Grapefruit (Citrus paradisi Macf.) has increased in importance as a crop species in the south-east of Spain in recent years. In spite of the fact that grapefruit is well adapted to semi-arid conditions, the irrigation necessities for fresh fruit production continue to be very high. The scarcity of water resources forces citrus growers to optimise their water use by using deficit irrigation (DI) strategies. The aim of this work was to evaluate the sensitivity to DI applied during different fruit growth stages of 14-year-old ‘Star Ruby’ grapefruit grafted on ‘Cleopatra’ mandarin (Citrus reshni Hort.), regarding water relations, trunk growth, yield and fruit quality. The experiment was carried out over two years in an experimental orchard located in Torre Pacheco (Murcia, south-eastern Spain). There were four irrigation treatments; Control (100% crop evapotranspiration – ETc) and three DI treatments (50% ETc) applied only during different fruit growth stages; DIPh-I (Phase I – cell division), DIPh-II (Phase II – cell elongation) and DIPh-III (Phase III – final fruit-growth period, ripening and harvest). The midday stem water potential (Ψmd) values of DIPh-I and DIPh-III were influenced by the rainfall regime in both years, whereas the Ψmd of DIPh-II was decreased and remained lower throughout the study period. Annual trunk growth was reduced only by the DIPh-I treatment; although the DIPh-II treatment decreased trunk growth during phase II it was relieved after the recovery period (during phase III). The main effects of both the DIPh-I and DIPh-III treatments were related with changes in fruit quality parameters; DIPh-I reduced the percentage of juice and DIPh-III affected negatively the peel colour when the water stress was moderate. However, the effects of DIPh-II were more drastic, decreasing yield due to smaller fruits, altering fruit composition, increasing the titratable acidity much more than the total soluble solids and affecting peel colour, therefore delaying fruit maturation.

Suggested Citation

  • Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
  • Handle: RePEc:eee:agiwat:v:133:y:2014:i:c:p:44-54
    DOI: 10.1016/j.agwat.2013.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413003077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    2. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2009. "Influence of deficit irrigation in phase III of fruit growth on fruit quality in 'lane late' sweet orange," Agricultural Water Management, Elsevier, vol. 96(6), pages 969-974, June.
    3. Treeby, M.T. & Henriod, R.E. & Bevington, K.B. & Milne, D.J. & Storey, R., 2007. "Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 24-32, July.
    4. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Gimeno, M.A. & Jiménez-Bello, M.A. & Lidón, A. & Manzano, J. & Badal, E. & Pérez-Pérez, J.G. & Bonet, L. & Intrigliolo, D.S. & Esteban, A., 2020. "Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring," Agricultural Water Management, Elsevier, vol. 235(C).
    2. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    3. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    4. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    5. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    6. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Nortes, P.A. & Alcobendas, R. & Romero-Trigueros, C. & Bayona, J.M. & Alarcón, J.J. & Nicolás, E., 2015. "Response of young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 51-60.
    7. Kangqi Geng & Yanxia Zhang & Dangui Lv & Dongmei Li & Zhenping Wang, 2022. "Effects of water stress on the sugar accumulation and organic acid changes in Cabernet Sauvignon grape berries," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 49(3), pages 164-178.
    8. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    3. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    4. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    5. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    6. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
    7. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    8. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    11. Mounzer, Oussama & Pedrero-Salcedo, Francisco & Nortes, Pedro A. & Bayona, José-Maria & Nicolás-Nicolás, Emilio & Alarcón, Juan José, 2013. "Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees," Agricultural Water Management, Elsevier, vol. 120(C), pages 23-29.
    12. Silveira, Laís Karina & Pavão, Glaucia Cristina & dos Santos Dias, Carlos Tadeu & Quaggio, José Antonio & Pires, Regina Célia de Matos, 2020. "Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Li, Dazhi & Hendricks Franssen, Harrie-Jan & Han, Xujun & Jiménez-Bello, Miguel Angel & Martínez Alzamora, Fernando & Vereecken, Harry, 2018. "Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain," Agricultural Water Management, Elsevier, vol. 208(C), pages 465-477.
    14. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    18. García-Tejero, I. & Jiménez-Bocanegra, J.A. & Martínez, G. & Romero, R. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]," Agricultural Water Management, Elsevier, vol. 97(5), pages 614-622, May.
    19. Hasan Zabihi & Mohsen Alizadeh & Philip Kibet Langat & Mohammadreza Karami & Himan Shahabi & Anuar Ahmad & Mohamad Nor Said & Saro Lee, 2019. "GIS Multi-Criteria Analysis by Ordered Weighted Averaging (OWA): Toward an Integrated Citrus Management Strategy," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    20. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:133:y:2014:i:c:p:44-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.