IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp142-150.html
   My bibliography  Save this article

Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes

Author

Listed:
  • Fukuda, Shinji
  • Spreer, Wolfram
  • Yasunaga, Eriko
  • Yuge, Kozue
  • Sardsud, Vicha
  • Müller, Joachim

Abstract

‘Chok Anan’ mangoes, mainly produced in Northern Thailand, are appreciated for their light to bright yellow colour and sweet taste. Because fruit development of the on-season mangoes occurs during the dry season, farmers have to irrigate mango trees to ensure high yields and good quality. Therefore, it is important to understand the effects of water supply on the yield of mango fruit for better control and effective use of limited water resources. In this study, we aim to demonstrate the applicability of Random Forests (RF) for estimating mango fruit yields in response to water supply under different irrigation regimes. To cope with the variability of mango fruit yields observed in the field, a set of RF models was developed to estimate the minimum, mean and maximum values for each of the mango fruit yields, namely “total yield” and “number of marketable mango fruit”. In RF modelling, a combination of 10-day rainfall and irrigation data was used as model input in order to evaluate the effects of water sources on the mango fruit yields. The RF models accurately estimated the maximum and mean values of mango fruit yields, and showed moderate accuracy for the minimum mango fruit yields. The variable importance measure computed in the RF calculation suggested that the timing of water supply affects the mango fruit yields whereby rainfall and irrigation have different effects on the mango fruit yields. This case study on the estimation of mango fruit yields demonstrates the applicability of RF in the field of agricultural engineering, with a specific focus on water management. The model performance and the information retrieved from the RF models allow for precise modelling and the development of improved management practices in target agricultural systems.

Suggested Citation

  • Fukuda, Shinji & Spreer, Wolfram & Yasunaga, Eriko & Yuge, Kozue & Sardsud, Vicha & Müller, Joachim, 2013. "Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 116(C), pages 142-150.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:142-150
    DOI: 10.1016/j.agwat.2012.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412001874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spreer, Wolfram & Ongprasert, Somchai & Hegele, Martin & Wnsche, Jens N. & Mller, Joachim, 2009. "Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 574-584, April.
    2. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    3. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    4. Vincenzi, Simone & Zucchetta, Matteo & Franzoi, Piero & Pellizzato, Michele & Pranovi, Fabio & De Leo, Giulio A. & Torricelli, Patrizia, 2011. "Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy," Ecological Modelling, Elsevier, vol. 222(8), pages 1471-1478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    2. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Schulze, Katrin & Spreer, Wolfram & Keil, Alwin & Ongprasert, Somchai & Müller, Joachim, 2013. "Mango (Mangifera indica L. cv. Nam Dokmai) production in Northern Thailand—Costs and returns under extreme weather conditions and different irrigation treatments," Agricultural Water Management, Elsevier, vol. 126(C), pages 46-55.
    4. Leontina Lipan & Aarón A. Carbonell-Pedro & Belén Cárceles Rodríguez & Víctor Hugo Durán-Zuazo & Dionisio Franco Tarifa & Iván Francisco García-Tejero & Baltasar Gálvez Ruiz & Simón Cuadros Tavira & R, 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?," Agriculture, MDPI, vol. 11(5), pages 1-16, May.
    5. Mario Lillo-Saavedra & Alberto Espinoza-Salgado & Angel García-Pedrero & Camilo Souto & Eduardo Holzapfel & Consuelo Gonzalo-Martín & Marcelo Somos-Valenzuela & Diego Rivera, 2022. "Early Estimation of Tomato Yield by Decision Tree Ensembles," Agriculture, MDPI, vol. 12(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Leontina Lipan & Aarón A. Carbonell-Pedro & Belén Cárceles Rodríguez & Víctor Hugo Durán-Zuazo & Dionisio Franco Tarifa & Iván Francisco García-Tejero & Baltasar Gálvez Ruiz & Simón Cuadros Tavira & R, 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?," Agriculture, MDPI, vol. 11(5), pages 1-16, May.
    3. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    4. Spreer, Wolfram & Ongprasert, Somchai & Hegele, Martin & Wnsche, Jens N. & Mller, Joachim, 2009. "Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 574-584, April.
    5. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    6. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Schulze, Katrin & Spreer, Wolfram & Keil, Alwin & Ongprasert, Somchai & Müller, Joachim, 2013. "Mango (Mangifera indica L. cv. Nam Dokmai) production in Northern Thailand—Costs and returns under extreme weather conditions and different irrigation treatments," Agricultural Water Management, Elsevier, vol. 126(C), pages 46-55.
    8. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    9. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    10. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    11. Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
    12. Víctor Hugo Durán Zuazo & Dionisio Franco Tarifa & Belén Cárceles Rodríguez & Baltasar Gálvez Ruiz & Pedro Cermeño Sacristán & Simón Cuadros Tavira & Iván Francisco García-Tejero, 2021. "Mango fruit quality improvements in response to water stress: implications for adaptation under environmental constraints," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 48(1), pages 1-11.
    13. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.
    14. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    15. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    16. Dandan Zhao & Hong S. He & Wen J. Wang & Lei Wang & Haibo Du & Kai Liu & Shengwei Zong, 2018. "Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    17. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    18. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    19. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    20. Abdulrahman Alhashimi & Arwa Abdulkreem AL-Huqail & Mustafa H. Hashem & Basem M. M. Bakr & Waleed M. E. Fekry & Hosny F. Abdel-Aziz & Ashraf E. Hamdy & Ramadan Eid Abdelraouf & Maher Fathy, 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions," Agriculture, MDPI, vol. 13(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:142-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.