IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v3y2000i1p39-65.html
   My bibliography  Save this article

Measuring business cycles with a dynamic Markov switching factor model: an assessment using Bayesian simulation methods

Author

Listed:
  • SYLVIA KAUFMANN

Abstract

A Markov switching common factor is used to drive a dynamic factor model for important macroeconomic variables in eight countries. Bayesian estimation of the model is based on Markov chain Monte Carlo simulation methods which yield inferences about the unobservable path of the common factor, the latent variable of the state process and all model parameters. Additionally, simulation based filtering provides us with samples from the prediction density that can be used for model diagnostics and specification tests. The mean posterior state probabilities are used to date business cycle turning points that follow quite closely previous datings reported in the literature. Moreover, we test the Markov switching against a no-switching specification by means of a Bayes factor. The evidence proves to be quite favorable for the Markov switching model.

Suggested Citation

  • Sylvia Kaufmann, 2000. "Measuring business cycles with a dynamic Markov switching factor model: an assessment using Bayesian simulation methods," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 39-65.
  • Handle: RePEc:ect:emjrnl:v:3:y:2000:i:1:p:39-65
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Kaufmann, 2002. "Is there an asymmetric effect of monetary policy over time? A Bayesian analysis using Austrian data," Empirical Economics, Springer, vol. 27(2), pages 277-297.
    2. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    3. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.
    4. Niko Hauzenberger & Florian Huber & Michael Pfarrhofer & Thomas O. Zorner, 2018. "Stochastic model specification in Markov switching vector error correction models," Papers 1807.00529, arXiv.org, revised Sep 2019.
    5. Sungyup Chung, 2016. "Assessing the regional business cycle asymmetry in a multi-level structure framework: a study of the top 20 US MSAs," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 229-252, January.
    6. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    7. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 31-49, March.
    8. Monica Billio & Laurent Ferrara & Dominique Guegan & Gian Luigi Mazzi, 2009. "Evaluation of Nonlinear time-series models for real-time business cycle analysis of the Euro area," Post-Print halshs-00423890, HAL.
    9. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    10. Konstantin A., Kholodilin, 2003. "Identifying and Forecasting the Turns of the Japanese Business Cycle," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2003008, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    11. Wang, Jin-ming & Gao, Tie-mei & McNown, Robert, 2009. "Measuring Chinese business cycles with dynamic factor models," Journal of Asian Economics, Elsevier, vol. 20(2), pages 89-97, March.
    12. Louise Holm, 2016. "The Swedish business cycle, 1969-2013," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2015(2), pages 1-22.
    13. Aneta Wlodarczyk & Marcin Zawada, 2008. "Markov-Switching Models for the Prices of Electric Energy on the Energy Stock Market in Poland," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 171-178.
    14. Chuku Chuku & Paul Middleditch, 2016. "Characterizing monetary and fiscal policy rules and interactions when commodity prices matter," Centre for Growth and Business Cycle Research Discussion Paper Series 222, Economics, The Univeristy of Manchester.
    15. Sungyup Chung, 2016. "Assessing the regional business cycle asymmetry in a multi-level structure framework: a study of the top 20 US MSAs," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 229-252, January.
    16. Catherine Doz & Anna Petronevich, 2015. "Dating Business Cycle Turning Points for the French Economy: a MS-DFM approach," Post-Print hal-01159200, HAL.
    17. Penelope A. Smith & Peter M. Summers, 2004. "Identification and normalization in Markov switching models of "business cycles"," Research Working Paper RWP 04-09, Federal Reserve Bank of Kansas City.
    18. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:3:y:2000:i:1:p:39-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.