IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-04-41.html
   My bibliography  Save this article

A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid

Author

Listed:
  • Ricardo Echeverri Mart nez

    (School of Electrical and Electronic Engineering, Universidad del Valle, Colombia.)

  • Eduardo Caicedo Bravo

    (School of Electrical and Electronic Engineering, Universidad del Valle, Colombia.)

  • Wilfredo Alfonso Morales

    (School of Electrical and Electronic Engineering, Universidad del Valle, Colombia.)

  • Juan David Garcia-Racines

    (School of Electrical and Electronic Engineering, Universidad del Valle, Colombia.)

Abstract

The planning and operation of Smart Grid projects is an issue that has increased in complexity and requires further analysis. This is due to the increase of distributed generation sources, generation with renewable sources, storage systems, and a disarticulation of information between the different levels in the sector and the stakeholders. All these factors lead to the inherent difficulty of defining appropriate models that help decision making. This paper proposes a bi-level optimization model to solve the problem of planning and operation of microgrid projects, as these can be considered as an ideal small-scale prototype of the so-called Smart Grids. In this bi-level scheme, the problem of planning or design of the microgrid is formulated at the upper level, while the problem of power dispatch or operation of the units is described at the lower level. The proposed multilevel multi-objective decision model is inspired by the System of System (SoS) concept in order to integrate qualitative and quantitative decision-making tools. Likewise, Key Performance Indicators (KPIs) are used for the detailed and continuous monitoring of any project. The presented model is applied using the information of an electrically isolated microgrid on the Colombian Pacific coast.

Suggested Citation

  • Ricardo Echeverri Mart nez & Eduardo Caicedo Bravo & Wilfredo Alfonso Morales & Juan David Garcia-Racines, 2020. "A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 325-341.
  • Handle: RePEc:eco:journ2:2020-04-41
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9343/5138
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9343/5138
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    2. Personal, Enrique & Guerrero, Juan Ignacio & Garcia, Antonio & Peña, Manuel & Leon, Carlos, 2014. "Key performance indicators: A useful tool to assess Smart Grid goals," Energy, Elsevier, vol. 76(C), pages 976-988.
    3. Zeng, Bo & Wen, Junqiang & Shi, Jinyue & Zhang, Jianhua & Zhang, Yuying, 2016. "A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment," Energy, Elsevier, vol. 96(C), pages 614-624.
    4. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    5. Quashie, Mike & Bouffard, François & Joós, Géza, 2017. "Business cases for isolated and grid connected microgrids: Methodology and applications," Applied Energy, Elsevier, vol. 205(C), pages 105-115.
    6. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid, 2019. "Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems," Energies, MDPI, vol. 12(9), pages 1-23, May.
    7. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    8. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    9. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilmer Ropero-Castaño & Nicolás Muñoz-Galeano & Eduardo F. Caicedo-Bravo & Pablo Maya-Duque & Jesús M. López-Lezama, 2022. "Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia," Energies, MDPI, vol. 15(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    2. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    3. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    4. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    5. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    6. Monadi, Mehdi & Zamani, M. Amin & Koch-Ciobotaru, Cosmin & Candela, Jose Ignacio & Rodriguez, Pedro, 2016. "A communication-assisted protection scheme for direct-current distribution networks," Energy, Elsevier, vol. 109(C), pages 578-591.
    7. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    8. Hisham Alidrisi, 2021. "Measuring the Environmental Maturity of the Supply Chain Finance: A Big Data-Based Multi-Criteria Perspective," Logistics, MDPI, vol. 5(2), pages 1-24, April.
    9. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    10. María Carmen Carnero, 2015. "Assessment of Environmental Sustainability in Health Care Organizations," Sustainability, MDPI, vol. 7(7), pages 1-22, June.
    11. Shoeib Faraji Abdolmaleki & Danial Esfandiary Abdolmaleki & Pastora M. Bello Bugallo, 2023. "Finding Sustainable Countries in Renewable Energy Sector: A Case Study for an EU Energy System," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    12. BumChoong Kim & Juhan Kim & Jinsoo Kim, 2019. "Evaluation Model for Investment in Solar Photovoltaic Power Generation Using Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    13. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    14. Alfonso Maria Ponsiglione & Francesco Amato & Santolo Cozzolino & Giuseppe Russo & Maria Romano & Giovanni Improta, 2022. "A Hybrid Analytic Hierarchy Process and Likert Scale Approach for the Quality Assessment of Medical Education Programs," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    15. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    16. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    17. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    18. Rujee Rodcha & Nitin K. Tripathi & Rajendra Prasad Shrestha, 2019. "Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods," Land, MDPI, vol. 8(5), pages 1-22, May.
    19. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    20. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.

    More about this item

    Keywords

    Smart Grids; Bi-level optimization; Decision Making; Key Performance Indicators; QFD; Energy planning and management.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-04-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.