IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v78y2010i3p1127-1141.html
   My bibliography  Save this article

Existence and Uniqueness of a Fixed Point for Local Contractions

Author

Listed:
  • V. Filipe Martins-da-Rocha
  • Yiannis Vailakis

Abstract

This paper proves the existence and uniqueness of a fixed point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study the existence and uniqueness of solutions to some recursive equations that arise in economic dynamics. Copyright 2010 The Econometric Society.

Suggested Citation

  • V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2010. "Existence and Uniqueness of a Fixed Point for Local Contractions," Econometrica, Econometric Society, vol. 78(3), pages 1127-1141, May.
  • Handle: RePEc:ecm:emetrp:v:78:y:2010:i:3:p:1127-1141
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA7920
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Pablo RincÛn-Zapatero & Carlos RodrÌguez-Palmero, 2003. "Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case," Econometrica, Econometric Society, vol. 71(5), pages 1519-1555, September.
    2. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    3. Juan Rincón-Zapatero & Carlos Rodríguez-Palmero, 2007. "Recursive utility with unbounded aggregators," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 381-391, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169552, HAL.
    2. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    3. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On temporal aggregators and dynamic programming," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 787-817, October.
    4. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Post-Print halshs-01169552, HAL.
    5. Takashi Kamihigashi, 2014. "An order-theoretic approach to dynamic programming: an exposition," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 13-21, April.
    6. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2018. "On Temporal Aggregators and Dynamic Programming," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01437496, HAL.
    7. Philippe Bich & Jean-Pierre Drugeon & Lisa Morhaim, 2015. "On Aggregators and Dynamic Programming," Documents de travail du Centre d'Economie de la Sorbonne 15053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Jean-Pierre Drugeon & Thai Ha-Huy & Thi Do Hanh Nguyen, 2019. "On maximin dynamic programming and the rate of discount," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(3), pages 703-729, April.
    9. Bloise, G. & Van, C. Le & Vailakis, Y., 2024. "An approximation approach to dynamic programming with unbounded returns," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    10. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    11. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2018. "On uniqueness of time-consistent Markov policies for quasi-hyperbolic consumers under uncertainty," Journal of Economic Theory, Elsevier, vol. 176(C), pages 293-310.
    12. Takashi Kamihigashi, 2011. "Existence and Uniqueness of a Fixed Point for the Bellman Operator in Deterministic Dynamic Programming," Discussion Paper Series DP2011-23, Research Institute for Economics & Business Administration, Kobe University.
    13. Paweł Dziewulski, 2011. "On Time-to-Build Economies with Multiple-Stage Investments," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 23-49.
    14. Tapan Mitra & Gerhard Sorger, 2014. "Extinction in common property resource models: an analytically tractable example," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(1), pages 41-57, September.
    15. Agnieszka Wiszniewska-Matyszkiel & Rajani Singh, 2020. "When Inaccuracies in Value Functions Do Not Propagate on Optima and Equilibria," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    16. Le Van, Cuong & Vailakis, Yiannis, 2005. "Recursive utility and optimal growth with bounded or unbounded returns," Journal of Economic Theory, Elsevier, vol. 123(2), pages 187-209, August.
    17. Matthias Messner & Nicola Pavoni & Christopher Sleet, "undated". "Contractive Dual Methods for Incentive Problems," GSIA Working Papers 2012-E26, Carnegie Mellon University, Tepper School of Business.
    18. V. Filipe Martins-da-Rocha & Yiannis Vailakis, 2013. "Fixed point for local contractions: Applications to recursive utility," International Journal of Economic Theory, The International Society for Economic Theory, vol. 9(1), pages 23-33, March.
    19. Cuong Le Van & Lisa Morhaim & Yiannis Vailakis, 2008. "Monotone Concave Operators: An application to the existence and uniqueness of solutions to the Bellman equation," Working Papers hal-00294828, HAL.
    20. Richard M. H. Suen, 2009. "Bounding the CRRA Utility Functions," Working Papers 200902, University of California at Riverside, Department of Economics, revised Feb 2009.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:78:y:2010:i:3:p:1127-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.