IDEAS home Printed from https://ideas.repec.org/a/ddj/fseeai/y2022i1p5-10.html
   My bibliography  Save this article

Deep Learning Systems Integrated into the Digital Strategy of a Company Involved in e-commerce

Author

Listed:
  • Robert RUSU

    (Dunarea de Jos University of Galati, Romania)

  • Constantin AVRAM

    (Dunarea de Jos University of Galati, Romania)

Abstract

The digital transformation is the current challenge of society, and especially in the conditions generated by the events of the last two years, this transformation has become somewhat indispensable. For some areas the digital transformation is still in the testing and controversy stage, for other areas this transformation has proven to be effective over time. Starting from this idea of digital transformation, this study will not only list the advantages and disadvantages of this phenomenon, but we will try to go into detail in the field of digitization and see a number of mechanisms that set these processes, more precisely we will try to identify how deep learning influences the digital transformation, based on a case study on a company involved in e-commerce, which tested the functionalities of AI Media, a platform able to perform analyzes in image recognition, geolocation and hypertargeting.

Suggested Citation

  • Robert RUSU & Constantin AVRAM, 2022. "Deep Learning Systems Integrated into the Digital Strategy of a Company Involved in e-commerce," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 5-10.
  • Handle: RePEc:ddj:fseeai:y:2022:i:1:p:5-10
    DOI: 10.35219/eai15840409238
    as

    Download full text from publisher

    File URL: http://www.eia.feaa.ugal.ro/images/eia/2022_1/Rusu_Avram.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.35219/eai15840409238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    2. Lichun Zhou, 2020. "Product advertising recommendation in e-commerce based on deep learning and distributed expression," Electronic Commerce Research, Springer, vol. 20(2), pages 321-342, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.
    2. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    5. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    6. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    7. Samya Tajmouati & Bouazza El Wahbi & Mohamed Dakkon, 2023. "Classical and fast parameters tuning in nearest neighbors with stop condition," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1063-1081, September.
    8. Onur Enginar & Kazim Baris Atici, 2022. "Optimal forecast error as an unbiased estimator of abnormal return: A proposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 158-166, January.
    9. Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
    10. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    11. Li, Danny H.W. & Aghimien, Emmanuel I. & Tsang, Ernest K.W., 2022. "Application of artificial neural networks in horizontal luminous efficacy modeling," Renewable Energy, Elsevier, vol. 197(C), pages 864-878.
    12. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    13. Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
    14. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    15. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Juan Jos√© Rinc√≥n Brice√±o, 2025. "Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning," Documentos CEDE 21388, Universidad de los Andes, Facultad de Economía, CEDE.
    17. Marco S. Reis & Ricardo Rendall & Biagio Palumbo & Antonio Lepore & Christian Capezza, 2020. "Predicting ships' CO2 emissions using feature‐oriented methods," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 110-123, January.
    18. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    19. Koffi, Siméon, 2022. "Prévision de l’inflation en Côte D’ivoire : Analyse Comparée des Modèles Arima, Holt-Winters, et Lstm [Inflation Forecasting in Côte D'Ivoire: A Comparative Analysis of the Arima, Holt-Winters, and," MPRA Paper 113961, University Library of Munich, Germany.
    20. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ddj:fseeai:y:2022:i:1:p:5-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gianina Mihai (email available below). General contact details of provider: https://edirc.repec.org/data/fegalro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.