IDEAS home Printed from https://ideas.repec.org/a/dbs/ijabfi/v2y2022i1p42-60id95.html
   My bibliography  Save this article

Information Entropy Theory and Asset Valuation: A Literature Survey

Author

Listed:
  • Sana Gaied Chortane
  • Kamel Naoui

Abstract

The purpose of this study is to review the empirical work applied to market efficiency, portfolio selection and asset valuation, focusing on the presentation of the comprehensive theoretical framework of Information Entropy Theory (IET). In addition, we examine how entropy addresses the shortcomings of traditional models for valuing financial assets, including the market efficiency hypothesis, the capital asset pricing model (CAPM), and the Black and Scholes option pricing model. We thoroughly reviewed the literature from 1948 to 2022 to achieve our objectives, including well-known asset pricing models and prominent research on information entropy theory. Our results show that portfolio managers are particularly attracted to valuations and strive to achieve maximum returns with minimal risk. The entropy-based portfolio selection model outperforms the standard model when return distributions are non-Gaussian, providing more comprehensive information about asset and distribution probabilities while emphasising the diversification principle. This distribution is then linked to the entropic interpretation of the no-arbitrage principle, especially when extreme fluctuations are considered, making it preferable to the Gaussian distribution for asset valuation. This study draws important conclusions from its extensive analysis. First, entropy better captures diversification effects than variance, as entropy measures diversification effects more generically than variance. Second, mutual information and conditional entropy provide reasonable estimates of systematic and specific risk in the linear equilibrium model. Third, entropy can be used to model non-linear dependencies in stock return time series, outperforming beta in predictability. Finally, information entropy theory is strengthened by empirical validation and alignment with financial views. Our findings enhance the understanding of market efficiency, portfolio selection and asset pricing for investors and decision-makers. Using Information Entropy Theory as a theoretical framework, this study sheds new light on its effectiveness in resolving some of the limitations in traditional asset valuation models, generating valuable insights into the theoretical framework of the theory.

Suggested Citation

  • Sana Gaied Chortane & Kamel Naoui, 2022. "Information Entropy Theory and Asset Valuation: A Literature Survey," International Journal of Accounting, Business and Finance, Indian Accounting Association, Patna Branch, vol. 2(1), pages 42-60.
  • Handle: RePEc:dbs:ijabfi:v:2:y:2022:i:1:p:42-60:id:95
    as

    Download full text from publisher

    File URL: https://www.ijabf.in/index.php/IJABF/article/view/95
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    2. S. P. Kothari & Jerold B. Warner, 2001. "Evaluating Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 56(5), pages 1985-2010, October.
    3. Saumitra N. Bhaduri, 2014. "Applying Approximate Entropy (ApEn) to Speculative Bubble in the Stock Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 13(1), pages 43-68, April.
    4. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
    5. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    6. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    7. Leonard MacLean & Lijun Yu & Yonggan Zhao, 2022. "A Generalized Entropy Approach to Portfolio Selection under a Hidden Markov Model," JRFM, MDPI, vol. 15(8), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

      Most related items

      These are the items that most often cite the same works as this one and are cited by the same works as this one.
      1. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
      2. Jacek Karasinski, 2022. "The Impact of the COVID-19 Outbreak on the Weak-Form Informational Efficiency of the Warsaw Stock Exchange (Wplyw wybuchu epidemii COVID-19 na efektywnosc informacyjna Gieldy Papierow Wartosciowych w ," Research Reports, University of Warsaw, Faculty of Management, vol. 2(37), pages 15-28.
      3. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
      4. Basu, Sudipta, 2004. "What do we learn from two new accounting-based stock market anomalies?," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 333-348, December.
      5. João Paulo Vieito & Wing-Keung Wong & Zhen-Zhen Zhu, 2016. "Could the global financial crisis improve the performance of the G7 stocks markets?," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1066-1080, March.
      6. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
      7. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
      8. Hakkio, Craig S, 1981. "Expectations and the Forward Exchange Rate," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 663-678, October.
      9. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
      10. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
      11. Christian Grund & Dirk Sliwka, 2007. "Reference-Dependent Preferences and the Impact of Wage Increases on Job Satisfaction: Theory and Evidence," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 163(2), pages 313-335, June.
      12. Goeree, Jacob K. & Holt, Charles A. & Palfrey, Thomas R., 2002. "Quantal Response Equilibrium and Overbidding in Private-Value Auctions," Journal of Economic Theory, Elsevier, vol. 104(1), pages 247-272, May.
      13. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
      14. Amos Schurr & Yaakov Kareev & Judith Avrahami & Ilana Ritov, 2012. "Taking the Broad Perspective: Risky Choices in Repeated Proficiency Tasks," Discussion Paper Series dp621, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
      15. Chateauneuf, Alain & Eichberger, Jurgen & Grant, Simon, 2007. "Choice under uncertainty with the best and worst in mind: Neo-additive capacities," Journal of Economic Theory, Elsevier, vol. 137(1), pages 538-567, November.
      16. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      17. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
      18. Chorvat, Terrence, 2006. "Taxing utility," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 35(1), pages 1-16, February.
      19. Grund, Christian & Sliwka, Dirk, 2001. "The Impact of Wage Increases on Job Satisfaction - Empirical Evidence and Theoretical Implications," IZA Discussion Papers 387, Institute of Labor Economics (IZA).
      20. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbs:ijabfi:v:2:y:2022:i:1:p:42-60:id:95. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Indian Accounting Association Patna Branch (email available below). General contact details of provider: https://www.ijabf.in/index.php/IJABF/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.