IDEAS home Printed from https://ideas.repec.org/a/col/000151/021316.html
   My bibliography  Save this article

Dinámica y determinantes del consumo de los hogares en Colombia, durante la postpandemia del Covid-19

Author

Listed:
  • Arias, Fernando

    (Banco de la República)

  • Lozano, Ignacio

    (Banco de la República)

  • Granger, Clark

    (Banco de la República)

  • Vasquéz, Diego

    (Banco de la República)

  • Vargas, Carmiña

    (Banco de la República)

  • Rodríguez, Norberto

    (Banco de la República)

  • Sánchez, Andrés

    (Banco de la República)

Abstract

Este documento analiza el comportamiento del consumo privado en Colombia durante la postpandemia del Covid-19. Inicialmente se compara la severidad de los confina-mientos y las respuestas fiscales entre países. Se evalúan los principales determinantes macroeconómicos del consumo, destacándose el ingreso disponible de los hogares, su ahorro y riqueza, la tasa de interés real y el crédito, las remesas y las transferencias monetarias del Gobierno. Los resultados muestran un rebote excepcional que registró el consumo en 2021 y 2022, impulsado por el crecimiento de estos factores. Para 2023 se prevé una desaceleración del consumo explicada por la contracción de sus principales determinantes

Suggested Citation

  • Arias, Fernando & Lozano, Ignacio & Granger, Clark & Vasquéz, Diego & Vargas, Carmiña & Rodríguez, Norberto & Sánchez, Andrés, 2023. "Dinámica y determinantes del consumo de los hogares en Colombia, durante la postpandemia del Covid-19," Revista de Economía del Rosario, Universidad del Rosario, vol. 26(2), pages 1-36, Diciembre.
  • Handle: RePEc:col:000151:021316
    as

    Download full text from publisher

    File URL: https://revistas.urosario.edu.co/index.php/economia/article/view/13515
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ilan Cooper, 2009. "Time-Varying Risk Premiums and the Output Gap," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2601-2633, July.
    2. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    3. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    4. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    5. Rüth, Sebastian K. & Simon, Camilla, 2022. "How do income and the debt position of households propagate fiscal stimulus into consumption?," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    6. Kellard, Neil M. & Nankervis, John C. & Papadimitriou, Fotios I., 2010. "Predicting the equity premium with dividend ratios: Reconciling the evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 539-551, September.
    7. Della Corte, Pasquale & Sarno, Lucio & Valente, Giorgio, 2010. "A century of equity premium predictability and the consumption-wealth ratio: An international perspective," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 313-331, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuno Silva, 2013. "Equity Premia Predictability in the EuroZone," GEMF Working Papers 2013-22, GEMF, Faculty of Economics, University of Coimbra.
    2. Nuno Silva, 2013. "Equity Premia Predictability in the EuroZone," GEMF Working Papers 2013-22, GEMF, Faculty of Economics, University of Coimbra.
    3. Martha, López & Eduardo, Sarmiento Gómez, 2023. "Excess Asset Returns Predictability in an Emerging Economy: The Case of Colombia," Revista de Economía del Rosario, Universidad del Rosario, vol. 26(2), pages 1-29, Diciembre.
    4. Nuno Silva, 2015. "Time-Varying Stock Return Predictability: The Eurozone Case," Notas Económicas, Faculty of Economics, University of Coimbra, issue 41, pages 28-38, June.
    5. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    6. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    7. McMillan, David G., 2019. "Predicting firm level stock returns: Implications for asset pricing and economic links," The British Accounting Review, Elsevier, vol. 51(4), pages 333-351.
    8. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    9. Hjalmarsson, Erik, 2005. "On the Predictability of Global Stock Returns," Working Papers in Economics 161, University of Gothenburg, Department of Economics.
    10. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    11. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    12. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    13. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    14. Alex Bara & Pierre LeRoux, 2018. "Technology, Financial Innovations and Bank Behavior in a Low Income Country," Journal of Economics and Behavioral Studies, AMH International, vol. 10(4), pages 221-234.
    15. Bruce Felmingham & SuSan Leong, 2005. "Parity conditions and the efficiency of the Australian 90‐ and 180‐day forward markets," Review of Financial Economics, John Wiley & Sons, vol. 14(2), pages 127-145.
    16. Asit Mohanty & Suresh Kumar Patra & Satyendra Kumar & Avipsa Mohanty, 2016. "An Empirical Analysis of Effect of Public Debt on Economic Growth in India in the Post-Reform Era," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(11), pages 692-705, November.
    17. Atanasov, Victoria, 2021. "Unemployment and aggregate stock returns," Journal of Banking & Finance, Elsevier, vol. 129(C).
    18. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    19. Sanjoy Kumar Saha, 2024. "Assessing the impact of rural electrification on economic growth: a comprehensive analysis considering informal economy and income inequality in Bangladesh," Asia-Pacific Journal of Regional Science, Springer, vol. 8(2), pages 551-583, June.
    20. Wickens, Michael R., 1996. "Interpreting cointegrating vectors and common stochastic trends," Journal of Econometrics, Elsevier, vol. 74(2), pages 255-271, October.

    More about this item

    Keywords

    consumo privado; ciclo económico; Covid-19; fmols; modelos de cointe-gración.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000151:021316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Facultad de Economía (email available below). General contact details of provider: https://edirc.repec.org/data/ferosco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.