IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2018v3p48-57.html
   My bibliography  Save this article

Average Monthly Temperature Forecast In Romania By Using Singular Spectrum Analysis

Author

Listed:
  • MARINOIU CRISTIAN

    (PETROLEUM-GAS UNIVERSITY OF PLOIESTI)

Abstract

Singular spectrum analysis (SSA) is one of the relatively recent time series analysis method which does not require a-priori assumption of a particular model. The method is based on the classical results in mathematics and has the advantage that it relies on the estimation of only two parameters. This paper briefly describes the main steps of the method and its use for forecast the time series of average monthly temperature in Romania. At the same time predictions with the same time series are made by using two other known forecast methods. By comparing methods in terms of prediction error we may find that using SSA leads to the best results.

Suggested Citation

  • Marinoiu Cristian, 2018. "Average Monthly Temperature Forecast In Romania By Using Singular Spectrum Analysis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 48-57, June.
  • Handle: RePEc:cbu:jrnlec:y:2018:v:3:p:48-57
    as

    Download full text from publisher

    File URL: http://www.utgjiu.ro/revista/ec/pdf/2018-03/06_Marinoiu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    2. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    2. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    3. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    4. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    5. Lai, Lin & Guo, Kun, 2017. "The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 299-308.
    6. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    7. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    8. Dimitrios Thomakos & Hossein Hassani & Kerry Patterson, 2013. "Optimal Linear Filtering, Smoothing and Trend Extraction for the m-th Differences of a Unit Root Process: A Singular Spectrum Analysis Approach," Economics Discussion Papers em-dp2013-04, Department of Economics, University of Reading.
    9. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    10. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    11. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    12. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    13. Th I Götz & G Lahmer & V Strnad & Ch Bert & B Hensel & A M Tomé & E W Lang, 2017. "A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-31, September.
    14. Leon, Costas, 2015. "Decomposition of the European GDP based on Singular Spectrum Analysis," MPRA Paper 65812, University Library of Munich, Germany.
    15. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    16. Carlos Alberto Orge Pinheiro & Valter de Senna, 2016. "Price Forecasting Through Multivariate Spectral Analysis: Evidence for Commodities of BMeFbovespa," Brazilian Business Review, Fucape Business School, vol. 13(5), pages 129-157, September.
    17. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    18. Stelios M. Potirakis & Masashi Hayakawa & Alexander Schekotov, 2017. "Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 59-86, January.
    19. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    20. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    21. Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2018:v:3:p:48-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae The email address of this maintainer does not seem to be valid anymore. Please ask Ecobici Nicolae to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.