IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v70y2024i5id121-2023-pse.html
   My bibliography  Save this article

Biochar addition enhances annual carbon stocks and ecosystem carbon sink intensity in saline soils of the Hetao Irrigation District, Inner Mongolia

Author

Listed:
  • Ruxin Zhang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China)

  • Zhongyi Qu

    (College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, P.R. China
    Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, P.R. China)

  • Wei Yang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
    Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, P.R. China)

  • Liping Wang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
    Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, P.R. China)

  • Dongliang Zhang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China)

  • Lu Liu

    (Northern Construction Management Department, China Three Gorges Renewables (Group) Co., Ltd., Beijing, P.R. China)

  • Junjie Li

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China)

  • Zhimin Zhang

    (Inner Mongolia Hetao Irrigation District Water Development Center Yichang Branch Center Yihe Canal Water Supply Station, Bayan Nur, P.R. China)

Abstract

Biochar has demonstrated potential for stabilising high yields and sequestering carbon in dryland farmland, but it is unclear whether biochar affects the carbon sequestration capacity and carbon balance of annual farmland ecosystems. For this purpose, we conducted a plot control trial in salinised farmland in 2019-2021, where we set three treatments, control, and two biochar rates, 0 (CK), 15 (B15), and 30 t/ha (B30). The results showed that biochar application decreased soil organic carbon stocks in the early part of the experiment (first freeze and freeze period); these increased in the later part, and overall, the biochar treatments increased soil organic carbon storage by 3-6% compared with the control. Compared with the control (CK), biochar inhibited the total soil respiration rate and microbial respiration rate significantly (P < 0.05) during the crop growing period compared with the freeze-thaw period. After two years of freeze-thaw cycling, biochar application increased sunflower plant carbon sequestration and net primary productivity and suppressed total soil microbial respiration, thereby increasing net ecosystem productivity. Therefore, the application of biochar is conducive to carbon sequestration in farmland ecosystems and presents a carbon sink effect, thus being a good choice for improving the soil carbon pool and reducing emissions in the northern dry zone.

Suggested Citation

  • Ruxin Zhang & Zhongyi Qu & Wei Yang & Liping Wang & Dongliang Zhang & Lu Liu & Junjie Li & Zhimin Zhang, 2024. "Biochar addition enhances annual carbon stocks and ecosystem carbon sink intensity in saline soils of the Hetao Irrigation District, Inner Mongolia," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(5), pages 263-275.
  • Handle: RePEc:caa:jnlpse:v:70:y:2024:i:5:id:121-2023-pse
    DOI: 10.17221/121/2023-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/121/2023-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/121/2023-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/121/2023-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. repec:caa:jnlpse:v:preprint:id:121-2023-pse is not listed on IDEAS
    3. Marli Vermooten & Muhammad Nadeem & Mumtaz Cheema & Raymond Thomas & Lakshman Galagedara, 2019. "Temporal Effects of Biochar and Dairy Manure on Physicochemical Properties of Podzol: Case from a Silage-Corn Production Trial in Boreal Climate," Agriculture, MDPI, vol. 9(8), pages 1-14, August.
    4. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    5. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    6. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.
    7. Dereje Dejene & Eyob Tilahun, 2019. "Characterization of Biochar Produced from Different Feed Stocks for Waste Management," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 20(3), pages 98-102, July.
    8. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    9. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Leonel J. R. Nunes & Mauro A. M. Raposo & Catarina I. R. Meireles & Carlos J. Pinto Gomes & Nuno M. C. Almeida Ribeiro, 2021. "Carbon Sequestration Potential of Forest Invasive Species: A Case Study with Acacia dealbata Link," Resources, MDPI, vol. 10(5), pages 1-16, May.
    11. Bartoli, Mattia & Piovano, Alessandro & Elia, Giuseppe Antonio & Meligrana, Giuseppina & Pedraza, Riccardo & Pianta, Nicolò & Tealdi, Cristina & Pagot, Gioele & Negro, Enrico & Triolo, Claudia & Gomez, 2024. "Pristine and engineered biochar as Na-ion batteries anode material: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    12. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    13. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    14. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Lohri, Christian Riuji & Rajabu, Hassan Mtoro & Sweeney, Daniel J. & Zurbrügg, Christian, 2016. "Char fuel production in developing countries – A review of urban biowaste carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1514-1530.
    16. Agampodi Gihan S. D. De Silva & Z K. Hashim & Wogene Solomon & Jun-Bin Zhao & Györgyi Kovács & István M. Kulmány & Zoltán Molnár, 2024. "Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation," Agriculture, MDPI, vol. 14(11), pages 1-33, November.
    17. Isabel M. Lima & Kyoung S. Ro & G. B. Reddy & Debbie L. Boykin & Kjell T. Klasson, 2015. "Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater," Agriculture, MDPI, vol. 5(3), pages 1-20, September.
    18. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    19. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    21. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:70:y:2024:i:5:id:121-2023-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.