IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v66y2020i1id66-2019-jfs.html
   My bibliography  Save this article

Work sampling and work process optimization in sonic and electrical resistance tree tomography

Author

Listed:
  • Martin Baláš
  • Josef Gallo

    (Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Ivan Kuneš

    (Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

Using non-destructive techniques in investigating tree stem rots is a modern approach in arboriculture and urban forestry. We used PiCUS® 3 Sonic tomograph (SoT) and TreeTronic® electrical resistance tomograph (ERT) to inspect the health status of urban and park trees. The process of setting up the device and measuring is time demanding as it requires numerous delicate operations. The aim of the study was to evaluate the time needed for measurement and to propose an optimal workflow. The results of work sampling suggest that scanning of one average-difficulty tree by SoT and ERT resistance tomography takes an average approximately 52 min (when one operator measures one scan), and approx. 37 min (when two operators measure a queue of trees). Working in two-person-team is moderately more efficient. Typically, the overall costs of one scan are approximately EUR 25-30 (~ CZK 650-780), depending on many variables.

Suggested Citation

  • Martin Baláš & Josef Gallo & Ivan Kuneš, 2020. "Work sampling and work process optimization in sonic and electrical resistance tree tomography," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(1), pages 9-21.
  • Handle: RePEc:caa:jnljfs:v:66:y:2020:i:1:id:66-2019-jfs
    DOI: 10.17221/66/2019-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/66/2019-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/66/2019-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/66/2019-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grabowski, Jozef & Pempera, Jaroslaw, 2000. "Sequencing of jobs in some production system," European Journal of Operational Research, Elsevier, vol. 125(3), pages 535-550, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    2. A Allahverdi & F S Al-Anzi, 2006. "Scheduling multi-stage parallel-processor services to minimize average response time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 101-110, January.
    3. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    4. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    5. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.
    6. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    7. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    8. Zhu, Jie & Li, Xiaoping & Wang, Qian, 2009. "Complete local search with limited memory algorithm for no-wait job shops to minimize makespan," European Journal of Operational Research, Elsevier, vol. 198(2), pages 378-386, October.
    9. Christophe Sauvey & Wajdi Trabelsi & Nathalie Sauer, 2020. "Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    10. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    11. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
    12. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    13. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    14. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
    15. Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
    16. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    17. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    18. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:66:y:2020:i:1:id:66-2019-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.