IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v9y2010i1n26.html
   My bibliography  Save this article

Locating Multiple Interacting Quantitative Trait Loci with the Zero-Inflated Generalized Poisson Regression

Author

Listed:
  • Erhardt Vinzenz

    (Technische Universität München)

  • Bogdan Malgorzata

    (Wroclaw University of Technology and Purdue University)

  • Czado Claudia

    (Technische Universität München)

Abstract

We consider the problem of locating multiple interacting quantitative trait loci (QTL) influencing traits measured in counts. In many applications the distribution of the count variable has a spike at zero. Zero-inflated generalized Poisson regression (ZIGPR) allows for an additional probability mass at zero and hence an improvement in the detection of significant loci. Classical model selection criteria often overestimate the QTL number. Therefore, modified versions of the Bayesian Information Criterion (mBIC and EBIC) were successfully used for QTL mapping. We apply these criteria based on ZIGPR as well as simpler models. An extensive simulation study shows their good power detecting QTL while controlling the false discovery rate. We illustrate how the inability of the Poisson distribution to account for over-dispersion leads to an overestimation of the QTL number and hence strongly discourages its application for identifying factors influencing count data. The proposed method is used to analyze the mice gallstone data of Lyons et al. (2003). Our results suggest the existence of a novel QTL on chromosome 4 interacting with another QTL previously identified on chromosome 5. We provide the corresponding code in R.

Suggested Citation

  • Erhardt Vinzenz & Bogdan Malgorzata & Czado Claudia, 2010. "Locating Multiple Interacting Quantitative Trait Loci with the Zero-Inflated Generalized Poisson Regression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-27, June.
  • Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:26
    DOI: 10.2202/1544-6115.1545
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1545
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Baierl, Andreas & Futschik, Andreas & Bogdan, Malgorzata & Biecek, Przemyslaw, 2007. "Locating multiple interacting quantitative trait loci using robust model selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6423-6434, August.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Zehua Chen & Jianbin Liu, 2009. "Mixture Generalized Linear Models for Multiple Interval Mapping of Quantitative Trait Loci in Experimental Crosses," Biometrics, The International Biometric Society, vol. 65(2), pages 470-477, June.
    5. Karl W. Broman & Terence P. Speed, 2002. "A model selection approach for the identification of quantitative trait loci in experimental crosses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 641-656, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    2. Frommlet, Florian & Ruhaltinger, Felix & Twaróg, Piotr & Bogdan, Małgorzata, 2012. "Modified versions of Bayesian Information Criterion for genome-wide association studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1038-1051.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frommlet, Florian & Ruhaltinger, Felix & Twaróg, Piotr & Bogdan, Małgorzata, 2012. "Modified versions of Bayesian Information Criterion for genome-wide association studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1038-1051.
    2. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    3. Frommlet Florian & Ljubic Ivana & Arnardóttir Helga Björk & Bogdan Malgorzata, 2012. "QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-26, May.
    4. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    5. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    6. repec:jss:jstsof:28:i02 is not listed on IDEAS
    7. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
    8. Shan Luo & Jinfeng Xu & Zehua Chen, 2015. "Extended Bayesian information criterion in the Cox model with a high-dimensional feature space," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 287-311, April.
    9. McLeod, A. Ian & Zhang, Ying, 2008. "Improved Subset Autoregression: With R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i02).
    10. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    11. Kan, Kamhon & Fu, Tsu-Tan, 1997. "Analysis of Housewives' Grocery Shopping Behavior in Taiwan: An Application of the Poisson Switching Regression," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(2), pages 397-407, December.
    12. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 1-18, January.
    13. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    14. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    15. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    16. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    17. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    18. Timothy C. Haab, "undated". "A Utility Based Repeated Discrete Choice Model of Consumer Demand," Working Papers 9611, East Carolina University, Department of Economics.
    19. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    20. Schmitz, Hendrik, 2013. "Practice budgets and the patient mix of physicians – The effect of a remuneration system reform on health care utilisation," Journal of Health Economics, Elsevier, vol. 32(6), pages 1240-1249.
    21. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.