IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v8y2020i1p67-81n5.html
   My bibliography  Save this article

A New Type of Evolutionary Strategy Based on a Multi-player Iterated Prisoner’s Dilemma Game

Author

Listed:
  • Xie Nenggang
  • Bao Wei

    (School of Management Science and Engineering, Anhui University of Technology, Ma’anshan, 243002, China)

  • Ye Ye

    (School of Mechanical Engineering, Anhui University of Technology, Ma’anshan, 243002, China)

  • Wang Meng

    (School of Business, Anhui University of Technology, Ma’anshan, 243002, China)

Abstract

According to the philosophy of self-cultivation that “one should refine his personal virtue when in poverty, and help save the world when in success”, a new type of evolutionary strategy, Poor-Competition-Rich-Cooperation (PCRC), is proposed. To discuss its superiority and inferiority, based on a multi-player iterated Prisoner’s Dilemma game, PCRC and other six kinds of strategies are played by using the roulette method in three different populations (a uniformly distributed population, a cooperation-preference population, a defection-preference population). The payoff characteristics for each strategy under different temptation coefficients and noise values are also analyzed. Simulation results indicate that PCRC has a sufficient robustness and its payoff presents a basically monotonic increasing tendency with the increment of noise. The superiority of PCRC becomes more obvious when the temptation coefficient becomes larger. Furthermore, a higher population preference for defection yields a more obvious advantage for PCRC.

Suggested Citation

  • Xie Nenggang & Bao Wei & Ye Ye & Wang Meng, 2020. "A New Type of Evolutionary Strategy Based on a Multi-player Iterated Prisoner’s Dilemma Game," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 67-81, February.
  • Handle: RePEc:bpj:jossai:v:8:y:2020:i:1:p:67-81:n:5
    DOI: 10.21078/JSSI-2020-067-15
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2020-067-15
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2020-067-15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    2. Fudenberg, Drew & Maskin, Eric, 1990. "Evolution and Cooperation in Noisy Repeated Games," American Economic Review, American Economic Association, vol. 80(2), pages 274-279, May.
    3. Outkin, Alexander V., 2003. "Cooperation and local interactions in the Prisoners' Dilemma Game," Journal of Economic Behavior & Organization, Elsevier, vol. 52(4), pages 481-503, December.
    4. Redouan Bshary & Alexandra S. Grutter, 2006. "Image scoring and cooperation in a cleaner fish mutualism," Nature, Nature, vol. 441(7096), pages 975-978, June.
    5. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    6. Isamu Okada & Hitoshi Yamamoto & Fujio Toriumi & Tatsuya Sasaki, 2015. "The Effect of Incentives and Meta-incentives on the Evolution of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    2. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    3. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    4. Pan, Qiuhui & Shi, Shu & Zhang, Yu & He, Mingfeng, 2013. "Cooperation in spatial prisoner’s dilemma game with delayed decisions," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 166-174.
    5. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    6. Rezaei, Golriz & Kirley, Michael, 2012. "Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6199-6211.
    7. van den Bergh, Jeroen C.J.M. & Gowdy, John M., 2009. "A group selection perspective on economic behavior, institutions and organizations," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 1-20, October.
    8. Alexander J. Stewart & Joshua B. Plotkin, 2015. "The Evolvability of Cooperation under Local and Non-Local Mutations," Games, MDPI, vol. 6(3), pages 1-20, July.
    9. Jiang, Zhi-Qiang & Wang, Peng & Ma, Jun-Chao & Zhu, Peican & Han, Zhen & Podobnik, Boris & Stanley, H. Eugene & Zhou, Wei-Xing & Alfaro-Bittner, Karin & Boccaletti, Stefano, 2023. "Unraveling the effects of network, direct and indirect reciprocity in online societies," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Klaus Jaffe & Roberto Cipriani, 2007. "Culture Outsmarts Nature in the Evolution of Cooperation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(1), pages 1-7.
    11. Misato Inaba & Nobuyuki Takahashi, 2019. "Linkage Based on the Kandori Norm Successfully Sustains Cooperation in Social Dilemmas," Games, MDPI, vol. 10(1), pages 1-15, February.
    12. Tetsushi Ohdaira & Takao Terano, 2009. "Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-7.
    13. Chengzhang Ma & Wei Cao & Wangheng Liu & Rong Gui & Ya Jia, 2013. "Direct Sum Matrix Game with Prisoner's Dilemma and Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    14. Jason Barr & Troy Tassier, 2010. "Endogenous Neighborhood Selection and the Attainment of Cooperation in a Spatial Prisoner’s Dilemma Game," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 211-234, March.
    15. Feng, Tian-Jiao & Fan, Song-Jia & Li, Cong & Tao, Yi & Zheng, Xiu-Deng, 2023. "Noise-induced sustainability of cooperation in Prisoner's Dilemma game," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    16. Satoshi Uchida & Hitoshi Yamamoto & Isamu Okada & Tatsuya Sasaki, 2019. "Evolution of Cooperation with Peer Punishment under Prospect Theory," Games, MDPI, vol. 10(1), pages 1-13, February.
    17. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    18. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    19. Hannes Rusch & Max Albert, 2013. "Indirect Reciprocity, Golden Opportunities for Defection, and Inclusive Reputation," MAGKS Papers on Economics 201329, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    20. Simone Righi & Károly Takács, 2022. "Gossip: Perspective Taking to Establish Cooperation," Dynamic Games and Applications, Springer, vol. 12(4), pages 1086-1100, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:8:y:2020:i:1:p:67-81:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.