IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v8y2012i1n21.html
   My bibliography  Save this article

Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds

Author

Listed:
  • Gruber Susan

    (Harvard University)

  • van der Laan Mark J.

    (University of California, Berkeley)

Abstract

This paper presents a targeted minimum loss based estimator (TMLE) that incorporates known conditional bounds on a continuous outcome. Subject matter knowledge regarding the bounds of a continuous outcome within strata defined by a subset of covariates, X, translates into statistical knowledge that constrains the model space of the true joint distribution of the data. In settings where there is low Fisher Information in the data for estimating the desired parameter, as is common when X is high dimensional relative to sample size, incorporating this domain knowledge can improve the fit of the targeted outcome regression, thereby improving bias and variance of the parameter estimate. We show that TMLE, a substitution estimator defined as a mapping from a density to a (possibly d-dimensional) real number, readily incorporates this global knowledge, resulting in improved finite sample performance.

Suggested Citation

  • Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-18, July.
  • Handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:21
    DOI: 10.1515/1557-4679.1413
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1557-4679.1413
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1557-4679.1413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sapp Stephanie & van der Laan Mark J. & Page Kimberly, 2014. "Targeted Estimation of Binary Variable Importance Measures with Interval-Censored Outcomes," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 1-21, May.
    2. Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
    3. Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
    4. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    5. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    6. Audrey Renson & Michael G. Hudgens & Alexander P. Keil & Paul N. Zivich & Allison E. Aiello, 2023. "Identifying and estimating effects of sustained interventions under parallel trends assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 2998-3009, December.
    7. Lina M. Montoya & Michael R. Kosorok & Elvin H. Geng & Joshua Schwab & Thomas A. Odeny & Maya L. Petersen, 2023. "Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT‐R trial," Biometrics, The International Biometric Society, vol. 79(3), pages 2577-2591, September.
    8. David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    2. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    3. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    4. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    6. Rosenblum Michael & van der Laan Mark J., 2010. "Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-30, April.
    7. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    8. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    9. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    10. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    11. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.
    12. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    13. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    14. Everding, Jakob & Marcus, Jan, 2020. "The effect of unemployment on the smoking behavior of couples," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 29(2), pages 154-170.
    15. Li Liang & Greene Tom, 2013. "A Weighting Analogue to Pair Matching in Propensity Score Analysis," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 215-234, July.
    16. McFarland, Michael J. & Geller, Amanda & McFarland, Cheryl, 2019. "Police contact and health among urban adolescents: The role of perceived injustice," Social Science & Medicine, Elsevier, vol. 238(C), pages 1-1.
    17. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    18. Gruber Susan & van der Laan Mark J., 2010. "An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, May.
    19. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    20. Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.