IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Direct Effect Models

Listed author(s):
  • van der Laan Mark J.

    (University of California, Berkeley)

  • Petersen Maya L

    (University of California, Berkeley)

Registered author(s):

    The causal effect of a treatment on an outcome is generally mediated by several intermediate variables. Estimation of the component of the causal effect of a treatment that is not mediated by an intermediate variable (the direct effect of the treatment) is often relevant to mechanistic understanding and to the design of clinical and public health interventions. Robins, Greenland and Pearl develop counterfactual definitions for two types of direct effects, natural and controlled, and discuss assumptions, beyond those of sequential randomization, required for the identifiability of natural direct effects. Building on their earlier work and that of others, this article provides an alternative counterfactual definition of a natural direct effect, the identifiability of which is based only on the assumption of sequential randomization. In addition, a novel approach to direct effect estimation is presented, based on assuming a model directly on the natural direct effect, possibly conditional on a subset of the baseline covariates. Inverse probability of censoring weighted estimators, double robust inverse probability of censoring weighted estimators, likelihood-based estimators, and targeted maximum likelihood-based estimators are proposed for the unknown parameters of this novel causal model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by De Gruyter in its journal The International Journal of Biostatistics.

    Volume (Year): 4 (2008)
    Issue (Month): 1 (October)
    Pages: 1-27

    in new window

    Handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:23
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Sara Geneletti, 2007. "Identifying direct and indirect effects in a non-counterfactual framework," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 199-215.
    2. Mark van der Laan & Maya Petersen, 2004. "Estimation of Direct and Indirect Causal Effects in Longitudinal Studies," U.C. Berkeley Division of Biostatistics Working Paper Series 1155, Berkeley Electronic Press.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.