IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v25y2010i1p43-64n5.html
   My bibliography  Save this article

On New Perspectives for Statistical Computing in Business and Industry – A Solution with STATISTICA and R

Author

Listed:
  • Weiß Christian H.

    (Darmstadt University of Technology, Department of Mathematics, Schlossgartenstraße 7, 64289 Darmstadt, Germany. E-mail: weiss@mathematik.tu-darmstadt.de)

Abstract

Companies in business and industry often make very different demands on statistical software packages, like flexibility concerning customized solutions, possibility of integrating non-standard stochastic approaches, use to validated applications, user-friendly interface, moderate costs, and many more. Usually, it is not possible to find a single software package that satisfies all such demands. Therefore, it would be attractive for entrepreneurs and statistical consultants if a collaboration among statistical software packages (e.g., leading commercial package extended by open source system) could be realized easily.In this article, we show how statistical procedures offered by R are easily integrated into the graphical user interface of STATISTICA, using the R DCOM Server of [Baier and Neuwirth, R/Scilab (D)COM Server V 3.0-1B5, 2008] and STATISTICA Visual Basic (SVB). We present solutions for different versions of STATISTICA, and illustrate all these approaches by an example from time series analysis: Using the tseries package of [Trapletti and Hornik, The tseries Package, Version 0.10-18, 2009], we tune STATISTICA with R by integrating R's ability for fitting GARCH models to given data into the user interface of STATISTICA.

Suggested Citation

  • Weiß Christian H., 2010. "On New Perspectives for Statistical Computing in Business and Industry – A Solution with STATISTICA and R," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 43-64, January.
  • Handle: RePEc:bpj:ecqcon:v:25:y:2010:i:1:p:43-64:n:5
    DOI: 10.1515/eqc.2010.004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc.2010.004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc.2010.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Baier & Erich Neuwirth, 2007. "Excel :: COM :: $$\mathsf{R}$$," Computational Statistics, Springer, vol. 22(1), pages 91-108, April.
    2. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dankenbring, Henning, 1998. "Volatility estimates of the short term interest rate with an application to German data," SFB 373 Discussion Papers 1998,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
    3. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    6. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    7. Hua, Zhongsheng & Zhang, Bin, 2008. "Improving density forecast by modeling asymmetric features: An application to S&P500 returns," European Journal of Operational Research, Elsevier, vol. 185(2), pages 716-725, March.
    8. Clements, Michael P., 2002. "Comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 469-482, December.
    9. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    10. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    11. Bentes, Sónia R., 2021. "How COVID-19 has affected stock market persistence? Evidence from the G7’s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    13. Nico Knuth & Andreas Nastansky, 2025. "Anwendung von Deep Learning in der Prognose der Volatilität des DAX: Ein Vergleich der Prognosegüte von GARCH und LSTM," Statistische Diskussionsbeiträge 59, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
    14. repec:dgr:rugccs:200602 is not listed on IDEAS
    15. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    16. Yu Kang, 2024. "Sustainable Development Through Energy Transition: The Role of Natural Resources and Gross Fixed Capital in China," Sustainability, MDPI, vol. 17(1), pages 1-26, December.
    17. Navarro-Barrientos, Jesús Emeterio & Cantero-Álvarez, Rubén & Matias Rodrigues, João F. & Schweitzer, Frank, 2008. "Investments in random environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2035-2046.
    18. Kin-Yip Ho & Albert K. Tsui & Zhaoyong Zhang, 2013. "Conditional Volatility Asymmetry Of Business Cycles: Evidence From Four Oecd Countries," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 38(3), pages 33-56, September.
    19. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Fatma SIALA GUERMEZI, & Amani BOUSSAADA, 2016. "The Weak Form Of Informational Efficiency: Case Of Tunisian Banking Sector," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 5(1), pages 1-1, January.
    21. T.J. Flavin & M.R. Wickens, 2003. "Macroeconomic influences on optimal asset allocation," Review of Financial Economics, John Wiley & Sons, vol. 12(2), pages 207-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:25:y:2010:i:1:p:43-64:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.