IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v9y2021i1p147-171n3.html
   My bibliography  Save this article

Designing experiments informed by observational studies

Author

Listed:
  • Rosenman Evan T. R.

    (Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138, USA)

  • Owen Art B.

    (Department of Statistics, Stanford University, Stanford, CA 94305, USA)

Abstract

The increasing availability of passively observed data has yielded a growing interest in “data fusion” methods, which involve merging data from observational and experimental sources to draw causal conclusions. Such methods often require a precarious tradeoff between the unknown bias in the observational dataset and the often-large variance in the experimental dataset. We propose an alternative approach, which avoids this tradeoff: rather than using observational data for inference, we use it to design a more efficient experiment. We consider the case of a stratified experiment with a binary outcome and suppose pilot estimates for the stratum potential outcome variances can be obtained from the observational study. We extend existing results to generate confidence sets for these variances, while accounting for the possibility of unmeasured confounding. Then, we pose the experimental design problem as a regret minimization problem subject to the constraints imposed by our confidence sets. We show that this problem can be converted into a concave maximization and solved using conventional methods. Finally, we demonstrate the practical utility of our methods using data from the Women’s Health Initiative.

Suggested Citation

  • Rosenman Evan T. R. & Owen Art B., 2021. "Designing experiments informed by observational studies," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 147-171, January.
  • Handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:147-171:n:3
    DOI: 10.1515/jci-2021-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2021-0010
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2021-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Raj Chetty & Guido W. Imbens & Hyunseung Kang, 2019. "The Surrogate Index: Combining Short-Term Proxies to Estimate Long-Term Treatment Effects More Rapidly and Precisely," NBER Working Papers 26463, National Bureau of Economic Research, Inc.
    2. Max Tabord-Meehan, 2023. "Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.
    3. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    4. Jacob Dorn & Kevin Guo, 2021. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Papers 2102.04543, arXiv.org, revised Aug 2023.
    5. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew A. Masten & Alexandre Poirier & Muyang Ren, 2025. "A General Approach to Relaxing Unconfoundedness," Papers 2501.15400, arXiv.org.
    2. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    3. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    4. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    5. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    6. Ruicheng Ao & Hongyu Chen & David Simchi-Levi, 2024. "Prediction-Guided Active Experiments," Papers 2411.12036, arXiv.org, revised Nov 2024.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    8. Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Predictive Incrementality by Experimentation (PIE) for Ad Measurement," Papers 2304.06828, arXiv.org.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Kasy, Maximilian, 2023. "The Political Economy of AI: Towards Democratic Control of the Means of Prediction," SocArXiv x7pcy, Center for Open Science.
    11. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    12. Atila Abdulkadiroğlu & Joshua D. Angrist & Yusuke Narita & Parag A. Pathak, 2017. "Research Design Meets Market Design: Using Centralized Assignment for Impact Evaluation," Econometrica, Econometric Society, vol. 85, pages 1373-1432, September.
    13. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    14. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    15. Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Brocco & Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org, revised Dec 2024.
    16. Ron Berman & Elea McDonnell Feit, 2024. "Latent Stratification for Incrementality Experiments," Marketing Science, INFORMS, vol. 43(4), pages 903-917, July.
    17. Kasy, Maximilian, 2023. "The Political Economy of AI: Towards Democratic Control of the Means of Prediction," SocArXiv x7pcy_v1, Center for Open Science.
    18. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    19. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    20. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:147-171:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.