IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v67y2013i4p482-498.html
   My bibliography  Save this article

Bartlett correction in the stable second‐order autoregressive model with intercept and trend

Author

Listed:
  • Noud P.A. van Giersbergen

Abstract

This paper derives the Bartlett factors that can be used to obtain higher‐order improvements for testing hypotheses about the autoregressive (AR) parameters in the stable AR(2) model with possible intercept and linear trend. The factors are obtained for testing hypotheses about individual parameters (φ1 and φ2) as well as their sum. Moreover, the effect of deterministic terms on the correction factors is found explicitly. All corrections are non‐decreasing in the AR parameters. Furthermore, the Bartlett corrections for φ1 and φ2 tend to infinity as φ2 approaches 1, whereas the correction for φ1 + φ2 tends to infinity as φ1 + φ2 is close to 1. The effectiveness of these Bartlett corrections in finite samples is evaluated by simulations.

Suggested Citation

  • Noud P.A. van Giersbergen, 2013. "Bartlett correction in the stable second‐order autoregressive model with intercept and trend," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 482-498, November.
  • Handle: RePEc:bla:stanee:v:67:y:2013:i:4:p:482-498
    DOI: 10.1111/stan.12018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12018
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    2. Taniguchi, Masanobu, 1988. "Asymptotic expansions of the distributions of some test statistics for Gaussian ARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 494-511, November.
    3. Bent Nielsen, 2004. "On the Distribution of Likelihood Ratio Test Statistics for Cointegration Rank," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 1-23.
    4. Nabeya, Seiji & Perron, Pierre, 1994. "Local asymptotic distribution related to the AR(1) model with dependent errors," Journal of Econometrics, Elsevier, vol. 62(2), pages 229-264, June.
    5. Willa W. Chen & Rohit S. Deo, 2012. "The restricted likelihood ratio test for autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 325-339, March.
    6. van Giersbergen, Noud P.A., 2009. "Bartlett Correction In The Stable Ar(1) Model With Intercept And Trend," Econometric Theory, Cambridge University Press, vol. 25(3), pages 857-872, June.
    7. Rolf Larsson, 1998. "Bartlett Corrections for Unit Root Test Statistics," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 425-438, July.
    8. Bravo, Francesco, 1999. "A Correction Factor For Unit Root Test Statistics," Econometric Theory, Cambridge University Press, vol. 15(2), pages 218-227, April.
    9. Jensen, J. L. & Wood, Andrew T. A., 1997. "On the non-existence of a Bartlett correction for unit root tests," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 181-187, September.
    10. Chen, Willa W. & Deo, Rohit S., 2009. "Bias Reduction And Likelihood-Based Almost Exactly Sized Hypothesis Testing In Predictive Regressions Using The Restricted Likelihood," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1143-1179, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, Marcus J. & Kyriacou, Maria, 2013. "Jackknife estimation with a unit root," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1677-1682.
    2. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    3. Canepa, Alessandra, 2020. "Improvement on the LR Test Statistic on the Cointegrating Relations in VAR Models: Bootstrap Methods and Applications," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202007, University of Turin.
    4. Alexei Onatski & Chen Wang, 2018. "Alternative Asymptotics for Cointegration Tests in Large VARs," Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
    5. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    6. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    7. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    8. Josep Lluís Carrion‐i‐Silvestre & María Dolores Gadea & Antonio Montañés, 2021. "Nearly Unbiased Estimation of Autoregressive Models for Bounded Near‐Integrated Stochastic Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 273-297, February.
    9. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    10. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    11. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    12. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    13. Rossi, Barbara, 2005. "Confidence Intervals for Half-Life Deviations From Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 432-442, October.
    14. Josep LluIs Carrion-I-Silvestre & Tomas Del Barrio & Enrique Lopez-Bazo, 2004. "Evidence on the purchasing power parity in a panel of cities," Applied Economics, Taylor & Francis Journals, vol. 36(9), pages 961-966.
    15. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    16. Georgios Chortareas & George Kapetanios, 2013. "How Puzzling Is The Ppp Puzzle? An Alternative Half‐Life Measure Of Convergence To Ppp," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 435-457, April.
    17. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    18. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    19. Carlos Robalo Marques, 2005. "Inflation persistence: facts or artefacts?," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    20. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:67:y:2013:i:4:p:482-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.