IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i1p358-373.html
   My bibliography  Save this article

Managing Stochastic Bucket Brigades on Discrete Work Stations

Author

Listed:
  • Peng Wang
  • Kai Pan
  • Zhenzhen Yan
  • Yun Fong Lim

Abstract

Bucket brigades are notably used to coordinate workers in production systems. We study a J‐station, I‐worker bucket brigade system. The time duration for each worker to serve a job at a station is exponentially distributed with a rate that depends on the station's expected work content and the worker's work speed. Our goal is to maximize the system's productivity or to minimize its inter‐completion time variability. We analytically derive the throughput and the coefficient of variation (CV) of the inter‐completion time. We study the system under two cases. (i) If the work speeds depend only on the workers, the throughput gap between the stochastic and the deterministic systems can be up to 47% when the number of stations is small. Either maximizing the throughput or minimizing the CV of the inter‐completion time, the slowest‐to‐fastest worker sequence always outperforms the reverse sequence for the stochastic bucket brigade. To maximize the throughput, more work content should be assigned to the stations near the faster workers. In contrast, to minimize the CV of the inter‐completion time, more work content should be allocated to the stations near the slower workers. (ii) If the work speeds depend on the workers and the stations such that the workers may not dominate each other at every station, the asymptotic throughput can be expressed as a function of the average work speeds and the asymptotic expected blocked times of the workers, and can be interpreted as the sum of the effective production rates of all the workers.

Suggested Citation

  • Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:1:p:358-373
    DOI: 10.1111/poms.13539
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13539
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avishai Mandelbaum & Alexander L. Stolyar, 2004. "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cμ-Rule," Operations Research, INFORMS, vol. 52(6), pages 836-855, December.
    2. Sigrún Andradóttir & Hayriye Ayhan, 2005. "Throughput Maximization for Tandem Lines with Two Stations and Flexible Servers," Operations Research, INFORMS, vol. 53(3), pages 516-531, June.
    3. Yun Fong Lim, 2011. "TECHNICAL NOTE---Cellular Bucket Brigades," Operations Research, INFORMS, vol. 59(6), pages 1539-1545, December.
    4. Yun Fong Lim & Yue Wu, 2014. "Cellular Bucket Brigades on U-Lines with Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 23(7), pages 1113-1128, July.
    5. John J. Bartholdi & Donald D. Eisenstein & Yun Fong Lim, 2009. "Deterministic chaos in a model of discrete manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 293-299, June.
    6. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    7. John J. Bartholdi, III & Donald D. Eisenstein, 2005. "Using Bucket Brigades to Migrate from Craft Manufacturing to Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 121-129, August.
    8. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    9. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    10. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    11. John J. Bartholdi & Donald D. Eisenstein, 1996. "A Production Line that Balances Itself," Operations Research, INFORMS, vol. 44(1), pages 21-34, February.
    12. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    13. Mor Armony & Carri W. Chan & Bo Zhu, 2018. "Critical Care Capacity Management: Understanding the Role of a Step Down Unit," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 859-883, May.
    14. Yossi Bukchin & Eran Hanany & Eugene Khmelnitsky, 2018. "Bucket brigade with stochastic worker pace," IISE Transactions, Taylor & Francis Journals, vol. 50(12), pages 1027-1042, December.
    15. John J. Bartholdi & Donald D. Eisenstein & Robert D. Foley, 2001. "Performance of Bucket Brigades When Work Is Stochastic," Operations Research, INFORMS, vol. 49(5), pages 710-719, October.
    16. Yun Fong Lim, 2017. "Performance of Cellular Bucket Brigades with Hand-Off Times," Production and Operations Management, Production and Operations Management Society, vol. 26(10), pages 1915-1923, October.
    17. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    18. Armbruster, Dieter & Gel, Esma S., 2006. "Bucket brigades revisited: Are they always effective?," European Journal of Operational Research, Elsevier, vol. 172(1), pages 213-229, July.
    19. Izak Duenyas & Diwakar Gupta & Tava Lennon Olsen, 1998. "Control of a Single-Server Tandem Queueing System with Setups," Operations Research, INFORMS, vol. 46(2), pages 218-230, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    2. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    3. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    4. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    5. Gregory Dobson & Tolga Tezcan & Vera Tilson, 2013. "Optimal Workflow Decisions for Investigators in Systems with Interruptions," Management Science, INFORMS, vol. 59(5), pages 1125-1141, May.
    6. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    7. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.
    8. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2016. "Optimal control of queueing systems with non-collaborating servers," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 79-110, October.
    9. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    10. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    11. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2022. "Dynamic Control of Non‐Collaborative Workers When Reassignment Is Costly," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1332-1352, March.
    12. Yun Fong Lim, 2011. "TECHNICAL NOTE---Cellular Bucket Brigades," Operations Research, INFORMS, vol. 59(6), pages 1539-1545, December.
    13. Sennott, Linn I. & Van Oyen, Mark P. & Iravani, Seyed M.R., 2006. "Optimal dynamic assignment of a flexible worker on an open production line with specialists," European Journal of Operational Research, Elsevier, vol. 170(2), pages 541-566, April.
    14. Sigrún Andradóttir & Hayriye Ayhan, 2005. "Throughput Maximization for Tandem Lines with Two Stations and Flexible Servers," Operations Research, INFORMS, vol. 53(3), pages 516-531, June.
    15. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
    16. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    17. Wallace J. Hopp & Seyed M.R. Iravani & Biying Shou & Robert Lien, 2009. "Design and control of agile automated CONWIP production lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 42-56, February.
    18. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
    19. Gabriel Zayas-Cabán & Jingui Xie & Linda V. Green & Mark E. Lewis, 2016. "Dynamic control of a tandem system with abandonments," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 279-293, December.
    20. Down, Douglas G. & Karakostas, George, 2008. "Maximizing throughput in queueing networks with limited flexibility," European Journal of Operational Research, Elsevier, vol. 187(1), pages 98-112, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:1:p:358-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.