IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i4p1154-1177.html
   My bibliography  Save this article

Optimal Bayesian Demand Learning over Short Horizons

Author

Listed:
  • Jue Wang

Abstract

We investigate the optimal Bayesian dynamic pricing and demand learning policy over short selling horizons, where the pricing decisions are time‐sensitive. The seller fine‐tunes the price near an incumbent price in order to maximize the total revenue. The existing literature focuses on policies that are asymptotically optimal, that is, near optimal when the selling horizons are sufficiently long, but little is known about the optimal Bayesian policies, especially over short horizons. We formulate the problem as a finite‐horizon stochastic dynamic program and identify a connection between the optimality equations and the generalized Weierstrass transform (GWT). We fully characterize the structure of the Bayesian optimal policy for the linear Gaussian demand model and prove that the optimal policy adjusts the myopic price away from the incumbent price. A notable exception occurs when the two prices coincide and the precision of the posterior belief exceeds a threshold, in which case it is optimal to forgo learning and use a fixed‐price policy. Exploiting the structural results makes it possible to compute the optimal policy efficiently on an ordinary computer.

Suggested Citation

  • Jue Wang, 2021. "Optimal Bayesian Demand Learning over Short Horizons," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1154-1177, April.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:4:p:1154-1177
    DOI: 10.1111/poms.13296
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13296
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    2. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    3. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    4. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    5. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    6. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    7. McLennan, Andrew, 1984. "Price dispersion and incomplete learning in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 7(3), pages 331-347, September.
    8. Chee-Yee Chong & David Cheng, 1975. "Multistage Pricing under Uncertain Demand," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 4, number 2, pages 311-323, National Bureau of Economic Research, Inc.
    9. Guillermo Gallego & Huseyin Topaloglu, 2019. "Revenue Management and Pricing Analytics," International Series in Operations Research and Management Science, Springer, number 978-1-4939-9606-3, January.
    10. Stein, William E. & Pfaffenberger, Roger C. & Mizzi, Philip J., 1993. "A stochastic dominance comparison of truncated normal distributions," European Journal of Operational Research, Elsevier, vol. 67(2), pages 259-266, June.
    11. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    12. Paat Rusmevichientong & John N. Tsitsiklis, 2010. "Linearly Parameterized Bandits," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 395-411, May.
    13. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zizhuo Wang & Chaolin Yang & Hongsong Yuan & Yaowu Zhang, 2021. "Aggregation Bias in Estimating Log‐Log Demand Function," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 3906-3922, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhong & L. Jeff Hong & Guangwu Liu, 2021. "Earning and Learning with Varying Cost," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2379-2394, August.
    2. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    3. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    4. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    5. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
    6. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    7. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    8. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    9. Yuqing Zhang & Neil Walton, 2019. "Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches," Papers 1907.05381, arXiv.org.
    10. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    11. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    12. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    13. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    14. Ruben van de Geer & Arnoud V. den Boer & Christopher Bayliss & Christine Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbj{o}rn Nil, 2018. "Dynamic Pricing and Learning with Competition: Insights from the Dynamic Pricing Challenge at the 2017 INFORMS RM & Pricing Conference," Papers 1804.03219, arXiv.org.
    15. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    16. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    17. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    18. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    19. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    20. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:4:p:1154-1177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.