IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v29y2020i1p101-117.html
   My bibliography  Save this article

Inventory Management under Storage and Order Restrictions

Author

Listed:
  • Shrutivandana Sharma
  • Hossein Abouee‐Mehrizi
  • Giorgio Sartor

Abstract

Inventory management in most practical settings faces challenges due to various restrictions on storage and replenishment of products. These restrictions may be posed by budget availability, different production/supply schedules for different products, and limited storage space shared by a number of products—very common in retail, food, and the pharmaceutical industry. Motivated by this, we investigate in this study how simultaneous restrictions on shared storage capacity and product‐specific order capacities impact optimal replenishments in a multi‐product system. We formulate the inventory replenishment problem as a multi‐period stochastic dynamic program, where products face stochastic demand with general distributions and excess demand is lost or fulfilled by emergency orders. We first fully characterize the optimal replenishment policy for two‐product systems, and provide a methodology to compute optimal replenishment quantities, which can be described as a dynamic priority‐based replenishment rule. Our results show that for each product, the optimal replenishment priority as well as quantity depends on the inventory levels of both products and all available capacities. More interestingly, the results show that capacity restrictions can flip the stocking priorities of products. Based on the optimal policy for two‐product systems, we develop a heuristic for multi‐product systems whose complexity scales linearly with the number of products. Under moderate storage capacities, our heuristic significantly outperforms the naive heuristics that ignore dynamic priority assignment, and closely captures the benefits of the optimal policy for systems with large number of products.

Suggested Citation

  • Shrutivandana Sharma & Hossein Abouee‐Mehrizi & Giorgio Sartor, 2020. "Inventory Management under Storage and Order Restrictions," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 101-117, January.
  • Handle: RePEc:bla:popmgt:v:29:y:2020:i:1:p:101-117
    DOI: 10.1111/poms.13097
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13097
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard V. Evans, 1967. "Inventory control of a multiproduct system with a limited production resource," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(2), pages 173-184.
    2. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands II. The Discounted-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 208-215, May.
    3. Saedi, Samira & Kundakcioglu, O. Erhun & Henry, Andrea C., 2016. "Mitigating the impact of drug shortages for a healthcare facility: An inventory management approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 107-123.
    4. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands I. The Average-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 193-207, May.
    5. Wang Chi Cheung & David Simchi-Levi, 2019. "Sampling-Based Approximation Schemes for Capacitated Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 668-692, May.
    6. Gregory A. DeCroix & Antonio Arreola-Risa, 1998. "Optimal Production and Inventory Policy for Multiple Products Under Resource Constraints," Management Science, INFORMS, vol. 44(7), pages 950-961, July.
    7. Roman Kapuściński & Sridhar Tayur, 1998. "A Capacitated Production-Inventory Model with Periodic Demand," Operations Research, INFORMS, vol. 46(6), pages 899-911, December.
    8. Paul Glasserman, 1997. "Bounds and Asymptotics for Planning Critical Safety Stocks," Operations Research, INFORMS, vol. 45(2), pages 244-257, April.
    9. Chen Shaoxiang, 2004. "The Optimality of Hedging Point Policies for Stochastic Two-Product Flexible Manufacturing Systems," Operations Research, INFORMS, vol. 52(2), pages 312-322, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Li & Lisheng Weng & Kaixu Zhao & Sidong Zhao & Ping Zhang, 2021. "Research on the Evaluation of Real Estate Inventory Management in China," Land, MDPI, vol. 10(12), pages 1-29, November.
    2. He, Shuang & Zhang, Jian & Zhang, Juliang & Cheng, T.C.E., 2022. "Production/inventory competition between firms with fixed-proportions co-production systems," European Journal of Operational Research, Elsevier, vol. 299(2), pages 497-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Janakiraman & Mahesh Nagarajan & Senthil Veeraraghavan, 2018. "Simple Policies for Managing Flexible Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 333-346, May.
    2. Ioannis Ch. Paschalidis & Yong Liu, 2003. "Large Deviations-Based Asymptotics for Inventory Control in Supply Chains," Operations Research, INFORMS, vol. 51(3), pages 437-460, June.
    3. Xinxin Hu & Izak Duenyas & Roman Kapuscinski, 2008. "Optimal Joint Inventory and Transshipment Control Under Uncertain Capacity," Operations Research, INFORMS, vol. 56(4), pages 881-897, August.
    4. Wang, Xun & Disney, Stephen M. & Ponte, Borja, 2023. "On the stationary stochastic response of an order-constrained inventory system," European Journal of Operational Research, Elsevier, vol. 304(2), pages 543-557.
    5. Xiaoying Liang & Houmin Yan, 2014. "Inventory control and replenishment with flexible delivery‐time upgrade," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 418-426, August.
    6. Iida, Tetsuo, 2002. "A non-stationary periodic review production-inventory model with uncertain production capacity and uncertain demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 670-683, August.
    7. Bo Li & Antonio Arreola‐Risa, 2022. "Minimizing conditional value‐at‐risk under a modified basestock policy," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1822-1838, April.
    8. F. Kleintje-Ell & G. Kiesmüller, 2015. "Cost minimising order schedules for a capacitated inventory system," Annals of Operations Research, Springer, vol. 229(1), pages 501-520, June.
    9. Altug, Mehmet Sekip & Muharremoglu, Alp, 2011. "Inventory management with advance supply information," International Journal of Production Economics, Elsevier, vol. 129(2), pages 302-313, February.
    10. Retsef Levi & Robin O. Roundy & David B. Shmoys & Van Anh Truong, 2008. "Approximation Algorithms for Capacitated Stochastic Inventory Control Models," Operations Research, INFORMS, vol. 56(5), pages 1184-1199, October.
    11. Dimitris Bertsimas & Ioannis Ch. Paschalidis, 2001. "Probabilistic Service Level Guarantees in Make-to-Stock Manufacturing Systems," Operations Research, INFORMS, vol. 49(1), pages 119-133, February.
    12. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2016. "Capacitated Multiechelon Inventory Systems: Policies and Bounds," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 570-584, October.
    13. James A. Rappold & John A. Muckstadt, 2000. "A computationally efficient approach for determining inventory levels in a capacitated multiechelon production‐distribution system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 377-398, August.
    14. Berling, Peter & Eng-Larsson, Fredrik, 2017. "Environmental implications of transport contract choice - capacity investment and pricing under volume and capacity contracts," European Journal of Operational Research, Elsevier, vol. 261(1), pages 129-142.
    15. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    16. Jian Yang & Zhaoqiong Qin, 2007. "Capacitated Production Control with Virtual Lateral Transshipments," Operations Research, INFORMS, vol. 55(6), pages 1104-1119, December.
    17. Han Zhu, 2022. "A simple heuristic policy for stochastic inventory systems with both minimum and maximum order quantity requirements," Annals of Operations Research, Springer, vol. 309(1), pages 347-363, February.
    18. Rodney P. Parker & Roman Kapuściński, 2011. "Managing a Noncooperative Supply Chain with Limited Capacity," Operations Research, INFORMS, vol. 59(4), pages 866-881, August.
    19. Feng Cheng* & Markus Ettl & Yingdong Lu & David D. Yao, 2012. "A Production–Inventory Model for a Push–Pull Manufacturing System with Capacity and Service Level Constraints," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 668-681, July.
    20. Xiting Gong & Xiuli Chao, 2013. "Technical Note---Optimal Control Policy for Capacitated Inventory Systems with Remanufacturing," Operations Research, INFORMS, vol. 61(3), pages 603-611, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:29:y:2020:i:1:p:101-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.