Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12540
Download full text from publisher
References listed on IDEAS
- Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
- Petra Kuhnert & D.W. Gladish & C.K. Wikle, 2014. "Physically motivated scale interaction parameterization in reduced rank quadratic nonlinear dynamic spatio‐temporal models," Environmetrics, John Wiley & Sons, Ltd., vol. 25(4), pages 230-244, June.
- Patrick L. McDermott & Christopher K. Wikle, 2019. "Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting," Environmetrics, John Wiley & Sons, Ltd., vol. 30(3), May.
- Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M., 2007. "Wind power resource assessment for Rafha, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 937-950, June.
- Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
- Richard Kinley, 2017. "Climate change after Paris: from turning point to transformation," Climate Policy, Taylor & Francis Journals, vol. 17(1), pages 9-15, January.
- Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
- Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
- Christopher Wikle & Mevin Hooten, 2010. "Rejoinder on: A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 466-468, November.
- Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
- Xinxin Zhu & Marc G. Genton, 2012. "Short‐Term Wind Speed Forecasting for Power System Operations," International Statistical Review, International Statistical Institute, vol. 80(1), pages 2-23, April.
- Felipe Tagle & Stefano Castruccio & Paola Crippa & Marc G. Genton, 2019. "A Non‐Gaussian Spatio‐Temporal Model for Daily Wind Speeds Based on a Multi‐Variate Skew‐t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(3), pages 312-326, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthew Bonas & Christopher K. Wikle & Stefano Castruccio, 2024. "Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
- Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.
- Felipe Tagle & Marc G. Genton & Andrew Yip & Suleiman Mostamandi & Georgiy Stenchikov & Stefano Castruccio, 2020. "A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
- Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
- Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
- Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
- Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
- Tansu Filik, 2016. "Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(3), pages 1-15, March.
- Bonneau, Mathieu & Johnson, Fred A. & Romagosa, Christina M., 2016. "Spatially explicit control of invasive species using a reaction–diffusion model," Ecological Modelling, Elsevier, vol. 337(C), pages 15-24.
- Dey, Soumen & Moqanaki, Ehsan & Milleret, Cyril & Dupont, Pierre & Tourani, Mahdieh & Bischof, Richard, 2023. "Modelling spatially autocorrelated detection probabilities in spatial capture-recapture using random effects," Ecological Modelling, Elsevier, vol. 479(C).
- Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
- Giri Gopalan & Christopher K. Wikle, 2022. "A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 22-45, March.
- Kai Yang & Peihua Qiu, 2022. "A three-step local smoothing approach for estimating the mean and covariance functions of spatio-temporal Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 49-68, February.
- Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
- Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
- Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
- Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:449-466. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.