IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v65y2016i5p649-675.html
   My bibliography  Save this article

Multivariate covariance generalized linear models

Author

Listed:
  • Wagner Hugo Bonat
  • Bent Jørgensen

Abstract

No abstract is available for this item.

Suggested Citation

  • Wagner Hugo Bonat & Bent Jørgensen, 2016. "Multivariate covariance generalized linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 649-675, November.
  • Handle: RePEc:bla:jorssc:v:65:y:2016:i:5:p:649-675
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.12145
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel A. Martinez-Beneito, 2013. "A general modelling framework for multivariate disease mapping," Biometrika, Biometrika Trust, vol. 100(3), pages 539-553.
    2. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    3. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    4. Weiping Zhang & Chenlei Leng & Cheng Yong Tang, 2015. "A joint modelling approach for longitudinal studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 219-238, January.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    6. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    7. Jianxin Pan, 2003. "On modelling mean-covariance structures in longitudinal studies," Biometrika, Biometrika Trust, vol. 90(1), pages 239-244, March.
    8. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    9. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    10. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    11. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    12. Mariana Rodrigues-Motta & Hildete P. Pinheiro & Eduardo G. Martins & Márcio S. Araújo & Sérgio F. dos Reis, 2013. "Multivariate models for correlated count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1586-1596, July.
    13. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    14. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    2. W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:65:y:2016:i:5:p:649-675. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.