IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i4d10.1007_s00362-025-01703-z.html
   My bibliography  Save this article

Tweedie compound Poisson multivariate state space models for semicontinuous time series

Author

Listed:
  • Xingde Duan

    (Guizhou University of Finance and Economics)

  • Renjun Ma

    (University of New Brunswick)

  • Xiaolei Zhang

    (Yunnan Normal University)

Abstract

Various approaches have been developed to analyze univariate semicontinuous time series data in the literature, whereas analysis of multivariate semicontinuous data has recently become an area of active research. However, there is apparently little, if any, literature on combining these two aspects to model multivariate semicontinuous time series data with covariates. In this paper, we introduce a family of multivariate state space models for semicontinuous time series data by incorporating serially correlated multivariate distribution-free random effects into Tweedie compound Poisson regression model. This model can flexibly accommodate unstructured covariance structures, skewness and zero-inflation. Unlike two-part modelling models, our model maintains natural temporal and multivariate structures of the data and characterizes the effects of covariates on the overall mean of the multivariate semicontinuous time series directly. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of the serially correlated multivariate random effects. The usefulness of our approach is illustrated through the analysis of monthly national financing data in China and simulation studies.

Suggested Citation

  • Xingde Duan & Renjun Ma & Xiaolei Zhang, 2025. "Tweedie compound Poisson multivariate state space models for semicontinuous time series," Statistical Papers, Springer, vol. 66(4), pages 1-28, June.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01703-z
    DOI: 10.1007/s00362-025-01703-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01703-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01703-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renjun Ma, 2003. "Random effects Cox models: A Poisson modelling approach," Biometrika, Biometrika Trust, vol. 90(1), pages 157-169, March.
    2. Renjun Ma & Bent Jørgensen, 2007. "Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 625-641, September.
    3. Wagner Hugo Bonat & Bent Jørgensen, 2016. "Multivariate covariance generalized linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 649-675, November.
    4. Šárka Hudecová & Michal Pešta, 2025. "Hurdle GARCH models for nonnegative time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 79(1), February.
    5. Wang, Xiaoqing & Feng, Xiangnan & Song, Xinyuan, 2020. "Joint analysis of semicontinuous data with latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    6. Frees, Edward W. & Jin, Xiaoli & Lin, Xiao, 2013. "Actuarial Applications of Multivariate Two-Part Regression Models," Annals of Actuarial Science, Cambridge University Press, vol. 7(2), pages 258-287, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Tariqul Hasan & Gary Sneddon & Renjun Ma, 2012. "Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 467-476, June.
    2. Tiago R. Pellegrini & M. Tariqul Hasan & Renjun Ma, 2017. "Modeling of paired zero-inflated continuous data without breaking down paired designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2427-2443, October.
    3. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    4. Henrique Aparecido Laureano & Ricardo Rasmussen Petterle & Guilherme Parreira da Silva & Paulo Justiniano Ribeiro Junior & Wagner Hugo Bonat, 2024. "A multinomial generalized linear mixed model for clustered competing risks data," Computational Statistics, Springer, vol. 39(3), pages 1417-1434, May.
    5. Maria Victoria Ibañez & Marina Martínez-Garcia & Amelia Simó, 2021. "A Review of Spatiotemporal Models for Count Data in R Packages. A Case Study of COVID-19 Data," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
    6. Marcelo Bourguignon & Célestin C. Kokonendji, 2024. "Coherent indexes for shifted count and semicontinuous models," Statistical Papers, Springer, vol. 65(8), pages 5253-5271, October.
    7. Shih, Joanna H. & Lu, Shou-En, 2009. "Semiparametric estimation of a nested random effects model for the analysis of multi-level clustered failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3864-3871, September.
    8. Yongge Tian, 2017. "Transformation approaches of linear random-effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 583-608, November.
    9. Liang Yang & Zhengxiao Li & Shengwang Meng, 2020. "Risk Loadings in Classification Ratemaking," Papers 2002.01798, arXiv.org, revised Jan 2022.
    10. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    11. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.
    12. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    13. Changli Lu & Yuqin Sun & Yongge Tian, 2018. "Two competing linear random-effects models and their connections," Statistical Papers, Springer, vol. 59(3), pages 1101-1115, September.
    14. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    15. Lee Youngjo & Gwangsu Kim, 2020. "Properties of h‐Likelihood Estimators in Clustered Data," International Statistical Review, International Statistical Institute, vol. 88(2), pages 380-395, August.
    16. Hadi Safari-Katesari & Samira Zaroudi, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.
    17. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
    19. Soltani, Ali & Roohani Qadikolaei, Mohsen, 2024. "Space-time analysis of accident frequency and the role of built environment in mitigation," Transport Policy, Elsevier, vol. 150(C), pages 189-205.
    20. W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01703-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.