Population‐based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9876.2008.00658.x
Download full text from publisher
References listed on IDEAS
- Zhang, Min & Strawderman, Robert L. & Cowen, Mark E. & Wells, Martin T., 2006. "Bayesian Inference for a Two-Part Hierarchical Model: An Application to Profiling Providers in Managed Health Care," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 934-945, September.
- Fouskakis, Dimitris & Draper, David, 2008. "Comparing Stochastic Optimization Methods for Variable Selection in Binary Outcome Prediction, With Application to Health Policy," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1367-1381.
- P. J. Brown & M. Vannucci & T. Fearn, 2002. "Bayes model averaging with selection of regressors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 519-536, August.
- S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
- David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Storm, Hugo & Heckelei, Thomas, 2012. "Predicting agricultural structural change using census and sample data," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125185, Agricultural and Applied Economics Association.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
- Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
- Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
- David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
- Naijun Sha & Marina Vannucci & Mahlet G. Tadesse & Philip J. Brown & Ilaria Dragoni & Nick Davies & Tracy C. Roberts & Andrea Contestabile & Mike Salmon & Chris Buckley & Francesco Falciani, 2004. "Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage," Biometrics, The International Biometric Society, vol. 60(3), pages 812-819, September.
- Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
- Clive J Hoggart & John C Whittaker & Maria De Iorio & David J Balding, 2008. "Simultaneous Analysis of All SNPs in Genome-Wide and Re-Sequencing Association Studies," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-8, July.
- Dimitris Korobilis, 2008.
"Forecasting in vector autoregressions with many predictors,"
Advances in Econometrics, in: Bayesian Econometrics, pages 403-431,
Emerald Group Publishing Limited.
- Korobilis, Dimitris, 2008. "Forecasting in vector autoregressions with many predictors," MPRA Paper 21122, University Library of Munich, Germany.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
- Yang, Yan & Simpson, Douglas, 2010. "Unified computational methods for regression analysis of zero-inflated and bound-inflated data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1525-1534, June.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015.
"Generalized exogenous processes in DSGE: A Bayesian approach,"
SFB 649 Discussion Papers
2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2018. "Generalized exogenous processes in DSGE: A Bayesian approach," IMFS Working Paper Series 125, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Yang, Yandong & Hong, Weijun & Li, Shufang, 2019. "Deep ensemble learning based probabilistic load forecasting in smart grids," Energy, Elsevier, vol. 189(C).
- Simila, Timo & Tikka, Jarkko, 2007. "Input selection and shrinkage in multiresponse linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 406-422, September.
- Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
- Davide fiaschi & Angela Parenti, 2013. "An Estimate of the Degree of Interconnectedness between European Regions: A Bayesian Model Averaging Approach," Discussion Papers 2013/171, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
- Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
- Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
- Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
- Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
- Sridhar Narayanan, 2013. "Bayesian estimation of discrete games of complete information," Quantitative Marketing and Economics (QME), Springer, vol. 11(1), pages 39-81, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:3:p:383-403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.