IDEAS home Printed from
   My bibliography  Save this article

Population-based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions


  • D. Fouskakis
  • I. Ntzoufras
  • D. Draper


The measurement and improvement of the quality of health care are important areas of current research and development. A judgement of appropriateness of medical outcomes in hospital quality-of-care studies must depend on an assessment of patient sickness at admission to hospital. Indicators of patient sickness often must be abstracted from medical records, and some variables are more expensive to measure than others. Quality-of-care studies are frequently undertaken in an environment of cost restriction; thus any scale measuring patient sickness must simultaneously respect two optimality criteria: high predictive accuracy and low cost. Here we examine a variable selection strategy for construction of a scale of sickness in which predictive accuracy is optimized subject to a bound on cost. Conventional model search algorithms (such as those based on standard reversible jump Markov chain Monte Carlo (RJMCMC) sampling) in our setting will often fail, because of the existence of multiple modes of the criterion function with movement paths that are forbidden because of the cost restriction. We develop a population-based trans-dimensional RJMCMC (population RJMCMC) algorithm, in which ideas from the population-based MCMC and simulated tempering algorithms are combined. Comparing our method with standard RJMCMC sampling, we find that the population-based RJMCMC algorithm moves successfully and more efficiently between distant neighbourhoods of 'good' models, achieves convergence faster and has smaller Monte Carlo standard errors for a given amount of central processor unit time. In a case-study of "n"=2532 pneumonia patients on whom "p"=83 sickness indicators were measured, with marginal costs varying from smallest to largest across the predictor variables by a factor of 20, the final model chosen by population RJMCMC sampling, on the basis of both highest posterior probability and specifying the median probability model, was clinically sensible for pneumonia patients and achieved good predictive ability while capping data collection costs. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • D. Fouskakis & I. Ntzoufras & D. Draper, 2009. "Population-based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 383-403.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:3:p:383-403

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fouskakis, Dimitris & Draper, David, 2008. "Comparing Stochastic Optimization Methods for Variable Selection in Binary Outcome Prediction, With Application to Health Policy," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1367-1381.
    2. David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890.
    3. P. J. Brown & M. Vannucci & T. Fearn, 2002. "Bayes model averaging with selection of regressors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 519-536.
    4. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39.
    5. Zhang, Min & Strawderman, Robert L. & Cowen, Mark E. & Wells, Martin T., 2006. "Bayesian Inference for a Two-Part Hierarchical Model: An Application to Profiling Providers in Managed Health Care," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 934-945, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Storm, Hugo & Heckelei, Thomas, 2012. "Predicting agricultural structural change using census and sample data," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125185, Agricultural and Applied Economics Association.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:3:p:383-403. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.