Model choice using reversible jump Markov chain Monte Carlo
Author
Abstract
Suggested Citation
DOI: j.1467-9574.2012.00516.x
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
- repec:dau:papers:123456789/6072 is not listed on IDEAS
- Al-Awadhi, Fahimah & Hurn, Merrilee & Jennison, Christopher, 2004. "Improving the acceptance rate of reversible jump MCMC proposals," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 189-198, August.
- Ricardo S. Ehlers & Stephen P. Brooks, 2008. "Adaptive Proposal Construction for Reversible Jump MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 677-690, December.
- Francesco Bartolucci & Luisa Scaccia & Antonietta Mira, 2006. "Efficient Bayes factor estimation from the reversible jump output," Biometrika, Biometrika Trust, vol. 93(1), pages 41-52, March.
- repec:dau:papers:123456789/6040 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Han, Ningren & Ram, Rajeev J., 2020. "Bayesian modeling and computation for analyte quantification in complex mixtures using Raman spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021.
"Recursive estimation in large panel data models: Theory and practice,"
Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
- Bing Jiang & Yanrong Yang & Jiti Gao & Cheng Hsiao, 2017. "Recursive estimation in large panel data models: Theory and practice," Monash Econometrics and Business Statistics Working Papers 5/17, Monash University, Department of Econometrics and Business Statistics.
- Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
- Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
- Ban Kheng Tan & Anastasios Panagiotelis & George Athanasopoulos, 2017. "Bayesian Inference for a 1-Factor Copula Model," Monash Econometrics and Business Statistics Working Papers 6/17, Monash University, Department of Econometrics and Business Statistics.
- Gianluca Mastrantonio, 2022. "The modelling of movement of multiple animals that share behavioural features," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 932-950, August.
- C. Berrett & B. Gurney & D. Arthur & T. Moon & G. P. Williams, 2023. "A Bayesian change point modeling approach to identify local temperature changes related to urbanization," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
- A. Mohammadi & M. Salehi-Rad & E. Wit, 2013. "Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service," Computational Statistics, Springer, vol. 28(2), pages 683-700, April.
- Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015.
"Generalized exogenous processes in DSGE: A Bayesian approach,"
SFB 649 Discussion Papers
2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2018. "Generalized exogenous processes in DSGE: A Bayesian approach," IMFS Working Paper Series 125, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
- N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
- Bouranis, Lampros & Friel, Nial & Maire, Florian, 2018. "Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 221-241.
- repec:hum:wpaper:sfb649dp2015-014 is not listed on IDEAS
- Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
- Oedekoven, C.S. & King, R. & Buckland, S.T. & Mackenzie, M.L. & Evans, K.O. & Burger, L.W., 2016. "Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 79-90.
- Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
- Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
- Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
- Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
- Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
- Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
- Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
- repec:dau:papers:123456789/5724 is not listed on IDEAS
- Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
- Sridhar Narayanan, 2013. "Bayesian estimation of discrete games of complete information," Quantitative Marketing and Economics (QME), Springer, vol. 11(1), pages 39-81, March.
- Kobayashi, Genya, 2014. "A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 167-183.
- Ronald W. Butler & Marc S. Paolella, 2017. "Autoregressive Lag—Order Selection Using Conditional Saddlepoint Approximations," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
- Sridhar Narayanan, 2013. "Bayesian estimation of discrete games of complete information," Quantitative Marketing and Economics (QME), Springer, vol. 11(1), pages 39-81, March.
- Shotwell Matthew S & Slate Elizabeth H, 2010. "Bayesian Modeling of Footrace Finishing Times," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-21, July.
- Griffin, J.E. & Steel, M.F.J., 2010.
"Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
- Griffin, Jim & Steel, Mark F.J., 2008. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," MPRA Paper 11071, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:66:y:2012:i:3:p:309-338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.