IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v68y2006i2p155-178.html

Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities

Author

Listed:
  • Francesco Bartolucci

Abstract

Summary. For a class of latent Markov models for discrete variables having a longitudinal structure, we introduce an approach for formulating and testing linear hypotheses on the transition probabilities of the latent process. For the maximum likelihood estimation of a latent Markov model under hypotheses of this type, we outline an EM algorithm that is based on well‐known recursions in the hidden Markov literature. We also show that, under certain assumptions, the asymptotic null distribution of the likelihood ratio statistic for testing a linear hypothesis on the transition probabilities of a latent Markov model, against a less stringent linear hypothesis on the transition probabilities of the same model, is of type. As a particular case, we derive the asymptotic distribution of the likelihood ratio statistic between a latent class model and its latent Markov version, which may be used to test the hypothesis of absence of transition between latent states. The approach is illustrated through a series of simulations and two applications, the first of which is based on educational testing data that have been collected within the National Assessment of Educational Progress 1996, and the second on data, concerning the use of marijuana, which have been collected within the National Youth Survey 1976–1980.

Suggested Citation

  • Francesco Bartolucci, 2006. "Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 155-178, April.
  • Handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:155-178
    DOI: 10.1111/j.1467-9868.2006.00538.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2006.00538.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2006.00538.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:155-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.