IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is2ps461-s484.html
   My bibliography  Save this article

A diagnostic framework for the Bradley–Terry model

Author

Listed:
  • Weichen Wu
  • Nynke Niezink
  • Brian Junker

Abstract

Pairwise comparison data are widely seen in the social sciences, criminology, perception, genetics, bibliometrics, zoology, sports analytics and other fields, and the Bradley–Terry model is among the most commonly used to analyse such data. In this paper, we propose a framework of diagnostics for this class of models, developing diagnostics for both the objects being compared and the subjects making the comparisons. We illustrate the proposed framework in two survey data sets.

Suggested Citation

  • Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s461-s484
    DOI: 10.1111/rssa.12959
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12959
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    2. A. Springall, 1973. "Response Surface Fitting Using a Generalization of the Bradley‐Terry Paired Comparison Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(1), pages 59-68, March.
    3. Turner, Heather & Firth, David, 2012. "Bradley-Terry Models in R: The BradleyTerry2 Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i09).
    4. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    5. Pena, Edsel A. & Slate, Elizabeth H., 2006. "Global Validation of Linear Model Assumptions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 341-354, March.
    6. Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.
    7. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    8. Ballinger, T Parker & Wilcox, Nathaniel T, 1997. "Decisions, Error and Heterogeneity," Economic Journal, Royal Economic Society, vol. 107(443), pages 1090-1105, July.
    9. Matthew J Salganik & Karen E C Levy, 2015. "Wiki Surveys: Open and Quantifiable Social Data Collection," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rowland G. Seymour & David Sirl & Simon P. Preston & Ian L. Dryden & Madeleine J. A. Ellis & Bertrand Perrat & James Goulding, 2022. "The Bayesian Spatial Bradley–Terry model: Urban deprivation modelling in Tanzania," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 288-308, March.
    2. Alessio Baldassarre & Elise Dusseldorp & Antonio D’Ambrosio & Mark de Rooij & Claudio Conversano, 2023. "The Bradley–Terry Regression Trunk approach for Modeling Preference Data with Small Trees," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1443-1465, December.
    3. Francesca Giambona & Mariano Porcu & Isabella Sulis, 2017. "Students Mobility: Assessing the Determinants of Attractiveness Across Competing Territorial Areas," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1105-1132, September.
    4. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    5. Wickelmaier, Florian & Strobl, Carolin & Zeileis, Achim, 2012. "Psychoco: Psychometric Computing in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i01).
    6. Gerhard Tutz & Gunther Schauberger, 2015. "Extended ordered paired comparison models with application to football data from German Bundesliga," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 209-227, April.
    7. Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
    8. Guillaume Hollard & Hela Maafi & Jean-Christophe Vergnaud, 2016. "Consistent inconsistencies? Evidence from decision under risk," Theory and Decision, Springer, vol. 80(4), pages 623-648, April.
    9. Nathaniel T. Wilcox, 2024. "Conditional independence in a binary choice experiment," Journal of Risk and Uncertainty, Springer, vol. 68(3), pages 205-225, June.
    10. Gafari Lukumon & Mark Klein, 2023. "Crowd-sourced idea filtering with Bag of Lemons: the impact of the token budget size," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(2), pages 205-219, June.
    11. D. A. Peel & Jie Zhang & D. Law, 2008. "The Markowitz model of utility supplemented with a small degree of probability distortion as an explanation of outcomes of Allais experiments over large and small payoffs and gambling on unlikely outc," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 17-26.
    12. John D. Hey, 2018. "Why We Should Not Be Silent About Noise," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 13, pages 309-329, World Scientific Publishing Co. Pte. Ltd..
    13. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2010. "Behavioral econometrics for psychologists," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 553-576, August.
    14. repec:osf:osfxxx:ha4cw_v1 is not listed on IDEAS
    15. Roberto Macrì Demartino & Leonardo Egidi & Nicola Torelli, 2025. "Alternative ranking measures to predict international football results," Computational Statistics, Springer, vol. 40(4), pages 1899-1917, April.
    16. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    17. Egil Matsen & Bjarne Strøm, 2006. "Joker: Choice in a simple game with large stakes," Working Paper Series 8307, Department of Economics, Norwegian University of Science and Technology.
    18. Erich Battistin & Marco Ovidi, 2022. "Rising Stars: Expert Reviews and Reputational Yardsticks in the Research Excellence Framework," Economica, London School of Economics and Political Science, vol. 89(356), pages 830-848, October.
    19. Rydval, Ondrej & Ortmann, Andreas, 2005. "Loss avoidance as selection principle: Evidence from simple stag-hunt games," Economics Letters, Elsevier, vol. 88(1), pages 101-107, July.
    20. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    21. Yurij L. Katchanov & Yulia V. Markova, 2017. "The “space of physics journals”: topological structure and the Journal Impact Factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 313-333, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s461-s484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.