IDEAS home Printed from https://ideas.repec.org/a/bla/jecrev/v58y2007i1p26-46.html
   My bibliography  Save this article

Nonparametric Likelihood: Efficiency And Robustness

Author

Listed:
  • YUICHI KITAMURA

Abstract

Nonparametric likelihood is a natural generalization of parametric likelihood and it offers effective methods for analysing economic models with nonparametric components. This is of great interest, since econometric theory rarely suggests a parametric form of the probability law of data. Being a nonparametric method, nonparametric likelihood is robust to misspecification. At the same time, it often achieves good properties that are analogous to those of parametric likelihood. This paper explores various applications of nonparametric likelihood, with some emphasis on the analysis of biased samples and data combination problems.

Suggested Citation

  • Yuichi Kitamura, 2007. "Nonparametric Likelihood: Efficiency And Robustness," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 26-46, March.
  • Handle: RePEc:bla:jecrev:v:58:y:2007:i:1:p:26-46
    DOI: 10.1111/j.1468-5876.2007.00416.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-5876.2007.00416.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-5876.2007.00416.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tripathi, Gautam, 2011. "Moment-Based Inference With Stratified Data," Econometric Theory, Cambridge University Press, vol. 27(1), pages 47-73, February.
    2. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grendar, Marian & Judge, George G., 2010. "Maximum likelihood with estimating equations," CUDARE Working Papers 56691, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Grendar, Marian & Judge, George G, 2009. "Maximum Empirical Likelihood: Empty Set Problem," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt71v338mh, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Grendar, Marian & Judge, George G., 2010. "Revised empirical likelihood," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6gs579r0, Department of Agricultural & Resource Economics, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Bravo, Francesco & Chu, Ba M. & Jacho-Chávez, David T., 2017. "Generalized empirical likelihood M testing for semiparametric models with time series data," Econometrics and Statistics, Elsevier, vol. 4(C), pages 18-30.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    5. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    6. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    7. Johannes K. Dreyer & Johannes Schneider & William T. Smith, 2020. "Saving-Based Asset Pricing and Leisure," Annals of Economics and Finance, Society for AEF, vol. 21(2), pages 507-526, November.
    8. Kabderian Dreyer, Johannes & Sharma, Vivek & Smith, William, 2023. "Warm-glow investment and the underperformance of green stocks," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 546-570.
    9. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    10. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    11. Kyungchul Song, 2009. "Efficient Estimation of Average Treatment Effects under Treatment-Based Sampling," PIER Working Paper Archive 09-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Yoshihide Kakizawa, 2013. "Frequency domain generalized empirical likelihood method," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 691-716, November.
    13. Esmeralda A. Ramalho & Joaquim J. S. Ramalho, 2006. "Two‐Step Empirical Likelihood Estimation Under Stratified Sampling When Aggregate Information Is Available," Manchester School, University of Manchester, vol. 74(5), pages 577-592, September.
    14. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    15. Francesco Bravo, 2022. "Misspecified semiparametric model selection with weakly dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 558-586, July.
    16. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    17. Alain Guay & Florian Pelgrin, 2016. "Using Implied Probabilities to Improve the Estimation of Unconditional Moment Restrictions for Weakly Dependent Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 344-372, March.
    18. Francesco Bravo, 2010. "Nonparametric likelihood inference for general autoregressive models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(1), pages 79-106, March.
    19. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    20. Nikolay Gospodinov & Raymond Kan & Cesare Robotti, 2018. "Asymptotic variance approximations for invariant estimators in uncertain asset-pricing models," Econometric Reviews, Taylor & Francis Journals, vol. 37(7), pages 695-718, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jecrev:v:58:y:2007:i:1:p:26-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/jeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.