IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v39y1995i1p71-87.html

An Optimal Control Model For Integrated Weed Management Under Herbicide Resistance

Author

Listed:
  • Russell J. Gorddard
  • David J. Pannell
  • Greg Hertzler

Abstract

The presence of weeds which have developed resistance to chemical herbicides is a problem of rapidly growing importance in Australian agriculture. We present an optimal control model of herbicide resistance development in ryegrass, the weed for which resistance is most commonly reported. The model is used to select the optimal combination of chemical and non-chemical control measures taking account of the trade off between short term profits and the long term level of herbicide resistance. Results indicate that given the threat of resistance there are benefits from integrating a combination of chemical and non-chemical control measures. The optimal strategy is found to include a declining herbicide dosage as resistance develops, with compensatory increases in the level of non-chemical control.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Russell J. Gorddard & David J. Pannell & Greg Hertzler, 1995. "An Optimal Control Model For Integrated Weed Management Under Herbicide Resistance," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(1), pages 71-87, April.
  • Handle: RePEc:bla:ajarec:v:39:y:1995:i:1:p:71-87
    DOI: j.1467-8489.1995.tb00544.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-8489.1995.tb00544.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-8489.1995.tb00544.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jones, Randall E. & Cacho, Oscar J. & Sinden, Jack A., 2003. "Modelling the Dynamics of Weed Management Technologies," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57902, Australian Agricultural and Resource Economics Society.
    2. Doole, Graeme J., 2008. "Optimal management of annual ryegrass ( Lolium rigidum Gaud.) in phase rotations in the Western Australian Wheatbelt," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 1-24.
    3. Mitchell, Paul D., 2011. "Economic Assessment of the Benefits of Chloro-s-triazine Herbicides to U.S. Corn, Sorghum, and Sugarcane Producers," Staff Paper Series 564, University of Wisconsin, Agricultural and Applied Economics.
    4. Pannell, David J. & Stewart, Vanessa & Bennett, Anne & Monjardino, Marta & Schmidt, Carmel & Powles, Stephen B., 2004. "RIM: a bioeconomic model for integrated weed management of Lolium rigidum in Western Australia," Agricultural Systems, Elsevier, vol. 79(3), pages 305-325, March.
    5. Schmidt, Carmel P & Pannell, David J, 1996. "Economic Issues in Management of Herbicide-Resistant Weeds," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 64(03), pages 1-8, December.
    6. Hoque, Ziaul & Farquharson, Robert J. & Dillon, Martin & Kauter, Greg, 2001. "An approach to modelling and evaluating alternative management strategies for insecticide resistance in the Australian cotton industry," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125664, Australian Agricultural and Resource Economics Society.
    7. repec:ags:aare05:137931 is not listed on IDEAS
    8. Jones, Randall E., 2005. "Sustainability and integrated weed management in Australian winter cropping systems: a bioeconomic analysis," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137930, Australian Agricultural and Resource Economics Society.
    9. Terrance Hurley & Silvia Secchi & Bruce Babcock & Richard Hellmich, 2002. "Managing the Risk of European Corn Borer Resistance to Bt Corn," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(4), pages 537-558, August.
    10. Jacobs, A. & Kingwell, R., 2016. "The Harrington Seed Destructor: Its role and value in farming systems facing the challenge of herbicide-resistant weeds," Agricultural Systems, Elsevier, vol. 142(C), pages 33-40.
    11. Pech, Caris L. & Doole, Graeme J. & Pluske, Johanna M., 2009. "The value of refugia in managing anthelmintic resistance: a modelling approach," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48166, Australian Agricultural and Resource Economics Society.
    12. Bennett, Anne L. & Pannell, David J., 1998. "Economic evaluation of a weed-activated sprayer for herbicide application to patchy weed populations," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 42(4), pages 1-20.
    13. Graeme J. Doole, 2008. "Optimal management of annual ryegrass (Lolium rigidum Gaud.) in phase rotations in the Western Australian Wheatbelt ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 339-362, September.
    14. Rohan Jayasuriya & Randall Jones & Remy Ven, 2011. "A bioeconomic model for determining the optimal response strategies for a new weed incursion," Journal of Bioeconomics, Springer, vol. 13(1), pages 45-72, April.
    15. Gorddard, Russell J. & Pannell, David J. & Hertzler, Greg, 1996. "Economic evaluation of strategies for management of herbicide resistance," Agricultural Systems, Elsevier, vol. 51(3), pages 281-298, July.
    16. repec:isu:genstf:2000010108000013359 is not listed on IDEAS
    17. Doole, Graeme J., 2009. "A Practical Algorithm for Multiple-Phase Control Systems in Agricultural and Natural Resource Economics," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(01), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:39:y:1995:i:1:p:71-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.