IDEAS home Printed from https://ideas.repec.org/a/bjz/ajisjr/878.html
   My bibliography  Save this article

Effects of Seeding Time and Competition Period on Weeds, Growth and Yield of Direct Seeded Fine Rice (Oryza Sativa L.)

Author

Listed:
  • Khuram Mubeen
  • Amit J. Jhala
  • Muhammad Hussain
  • M. H. Siddiqui
  • Faisal Zahoor
  • Muhammad Shehzad
  • Khalid Mehmood

Abstract

The information on combined effect of seeding time and competition period on weeds, phenology and yield of directly sown rice is very limited. Field experiments were conducted for two years during 2008 and 2009 to study these effects. Rice cultivar “Super basmati†was seeded during 1st and 3rd week of June and 1st week of July and weeds were allowed to compete for 15, 30, 45, 60 days after seeding (DAS). Weed free treatment along with a weedy check was also maintained for comparison. Interaction effect of seeding time and competition period was significant. Weed crop competition until 15 DAS gave statistically similar kernel yield to weed free in different seeding times with better yield in plots sown in first week of June during both years. However an increase in competition period from 15 DAS to 30 DAS could not exhibit significant differences. Further increase in competition periods increased the weed density and biomass with significant reduction in yield. So rice may be direct seeded in first week of June and weeds be controlled from 15 to 30 DAS in direct seeded culture in agro physiological conditions of Faisalabad (Pakistan). However more research is needed on checking the competition between weeds and direct seeded rice in terms of density of weeds.

Suggested Citation

  • Khuram Mubeen & Amit J. Jhala & Muhammad Hussain & M. H. Siddiqui & Faisal Zahoor & Muhammad Shehzad & Khalid Mehmood, 2014. "Effects of Seeding Time and Competition Period on Weeds, Growth and Yield of Direct Seeded Fine Rice (Oryza Sativa L.)," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 3, July.
  • Handle: RePEc:bjz:ajisjr:878
    DOI: 10.5901/ajis.2014.v3n5p55
    as

    Download full text from publisher

    File URL: https://www.richtmann.org/journal/index.php/ajis/article/view/4377
    Download Restriction: no

    File URL: https://www.richtmann.org/journal/index.php/ajis/article/view/4377/4280
    Download Restriction: no

    File URL: https://libkey.io/10.5901/ajis.2014.v3n5p55?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Belhouchette, Hatem & Wery, Jacques & Therond, Olivier & Duru, Michel & Bigot, Genevieve & Was, Adam & Kloczko-Gajewska, Anna & Leenhardt, Delphine & Majewski, Edward & Josien, Etienne & Bergez, Jacqu, 2006. "The major characteristics of environmental policies and agro-ecological technologies to be studied in Test case 2," Reports 57464, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    3. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    4. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    5. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    6. Wang, Yu & Zhou, Li & Jia, Qingyu & Yu, Wenying, 2017. "Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China," Agricultural Water Management, Elsevier, vol. 187(C), pages 222-231.
    7. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    8. Razavipour, Teimour & Moghaddam, Sina Siavash & Doaei, Sahar & Noorhosseini, Seyyed Ali & Damalas, Christos A., 2018. "Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 209(C), pages 1-10.
    9. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    10. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    11. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    12. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    13. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    14. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    15. Boling, A.A. & Bouman, B. A.M. & Tuong, T.P. & Murty, M.V.R. & Jatmiko, S.Y., 2007. "Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 92(1-3), pages 115-139, January.
    16. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    17. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    18. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    20. Anjali Chaudhary & V. Venkatramanan & Ajay Kumar Mishra & Sheetal Sharma, 2023. "Agronomic and Environmental Determinants of Direct Seeded Rice in South Asia," Circular Economy and Sustainability,, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjz:ajisjr:878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richtmann Publishing Ltd (email available below). General contact details of provider: https://www.richtmann.org/journal/index.php/ajis .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.