IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v9y2022i4p01-05.html
   My bibliography  Save this article

Technical Evaluation of Cathodic Protection of Subsea Structures

Author

Listed:
  • Precious Chisom Jumbo-Egwurugwu

    (University of Port Harcourt, Nigeria)

  • Franklin Okoro

    (CleanScript Group)

  • Ibe Emmanuel

    (University of Port Harcourt, Nigeria)

  • Obo-Obaa Elera Njiran

    (University of Port Harcourt, Nigeria)

Abstract

This paper carried out the performance evaluation of cathodic protection in comparison with other corrosion prevention techniques based on factors like conductivity, maintenance requirement, cost, electrical continuity, and surface area of structure treated. In the course of the work, the comparative analysis of these techniques was carried out using a multi criteria analysis tool ‘TOPSIS’. After going through all the stages in the TOPSIS assessment, the best corrosion prevention technology with respect to all the considered criteria, which comprised of: treatment time, effectiveness, energy consumption, durability, economics and maturity is reinforcing materials with a TOPSIS score of 0.7745. The second-best technology is cathodic protection with a TOPSIS score of 0.6729, followed by surface treatment and coating with a TOPSIS score of 0.5903. Inhibitors came fourth with a TOPSIS score of 0.5897 while the worst technology per the analysis in this study is electrochemical chloride removal with a TOPSIS score of 0.2355.

Suggested Citation

  • Precious Chisom Jumbo-Egwurugwu & Franklin Okoro & Ibe Emmanuel & Obo-Obaa Elera Njiran, 2022. "Technical Evaluation of Cathodic Protection of Subsea Structures," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(4), pages 01-05, April.
  • Handle: RePEc:bjc:journl:v:9:y:2022:i:4:p:01-05
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-9-issue-4/01-05.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/virtual-library/papers/technical-evaluation-of-cathodic-protection-of-subsea-structures/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jang, Yun Jung & Choi, Chan Woong & Lee, Jang Ho & Kang, Ki Weon, 2015. "Development of fatigue life prediction method and effect of 10-minute mean wind speed distribution on fatigue life of small wind turbine composite blade," Renewable Energy, Elsevier, vol. 79(C), pages 187-198.
    2. Dong, Wenbin & Moan, Torgeir & Gao, Zhen, 2012. "Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 11-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Bashirzadeh Tabrizi, Amir & Whale, Jonathan & Lyons, Thomas & Urmee, Tania & Peinke, Joachim, 2017. "Modelling the structural loading of a small wind turbine at a highly turbulent site via modifications to the Kaimal turbulence spectra," Renewable Energy, Elsevier, vol. 105(C), pages 288-300.
    3. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    4. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    6. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    7. Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    9. Antoine Chrétien & Antoine Tahan & Philippe Cambron & Adaiton Oliveira-Filho, 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data," Energies, MDPI, vol. 16(7), pages 1-18, March.
    10. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    11. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    12. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2016. "A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components," Renewable Energy, Elsevier, vol. 96(PA), pages 775-783.
    13. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Häfele, Jan & Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2018. "A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures," Renewable Energy, Elsevier, vol. 118(C), pages 99-112.
    15. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    16. Samarakoon, Samindi M.K. & Ratnayake, R.M. Chandima, 2015. "Strengthening, modification and repair techniques’ prioritization for structural integrity control of ageing offshore structures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 15-26.
    17. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    19. Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
    20. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:9:y:2022:i:4:p:01-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.