IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v8y2022i6p107-111.html
   My bibliography  Save this article

Predicting Stock Price in Python Using TensorFlow and Keras

Author

Listed:
  • Orlunwo Placida Orochi

    (Computer Science Department, Ignatius Ajuru University of Education)

  • Ledesi Kabari

    (Computer Science Department, Ignatius Ajuru University of Education)

Abstract

One of the most important practices in the financial world is stock trading. The act of attempting to forecast the future value of a stock or other financial instrument listed on a stock exchange is known as stock market prediction. This paper discusses how Machine Learning can be used to predict a stock’s price. When it comes to stock forecasts, most stockbrokers use technical and fundamental analysis, as well as time series analysis. Python is the programming language used to forecast the stock market. In this paper, we propose a Machine Learning (ML) method that will be trained using publicly accessible stock data to obtain intelligence, and then use that intelligence to make an accurate prediction. In this context, this research builds a neural network in TensorFlow and Keras that predicts stock market, which is basically a Python scraper that extracts finance data from the Yahoo Finance platform; more precisely, a Recurrent Neural Network with LSTM cells was constructed, which is the current state-of-the-art in time series forecasting.

Suggested Citation

  • Orlunwo Placida Orochi & Ledesi Kabari, 2021. "Predicting Stock Price in Python Using TensorFlow and Keras," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(6), pages 107-111, June.
  • Handle: RePEc:bjc:journl:v:8:y:2022:i:6:p:107-111
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-8-issue-6/107-111.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/virtual-library/papers/predicting-stock-price-in-python-using-tensor-flow-and-keras/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    2. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    3. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    4. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    5. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    6. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    7. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    8. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    9. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    10. Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
    11. Mohammad Zoynul Abedin & Mahmudul Hasan Moon & M. Kabir Hassan & Petr Hajek, 2025. "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 1335-1386, February.
    12. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    13. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    14. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    15. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    16. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    17. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    18. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    19. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    20. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:8:y:2022:i:6:p:107-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.