IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v9y2025i13p150-158.html
   My bibliography  Save this article

Impacts of Effective Communication on Managing Rumour During Change in Higher Institutions in Ekiti State, Nigeria

Author

Listed:
  • Olanike Justinah OLUSOLA

    (Department of Communication Studies, Bamidele Olumilua University of Education, Science and Technology, Ikere)

  • Ibikunle Olayiwola AJISAFE

    (Department of Media and Communication Studies Afe Babalola University, Ado-Ekiti.)

  • Omowumi Bukola OLASEINDE

    (Department of Communication Studies, Bamidele Olumilua University of Education, Science and Technology, Ikere)

  • Goodluck Tamarameiye LAYEFA

    (Department of Media and Communication Studies Afe Babalola University, Ado-Ekiti.)

Abstract

Rumour management is an essential aspect of organisational change. Previous studies have focused on rumour management in corporate organisations in the energy, banking and health sectors with little attention on educational institutions. This study, therefore, is designed to identify the causes and channels of rumour and also investigate the strategies of managing them during times of change in higher institutions in Ekiti State. Uncertainty Reduction Theory is adopted. The study employs survey research design, and two Ekiti State owned universities – Ekiti State University, Ado-Ekiti (EKSU), and Bamidele Olumilua University of Education, Science and Technology, Ikere (BOUESTI) are selected. 350 respondents are selected from both institutions; the two universities’ Public Relations Officers and six union leaders are interviewed. Cases of rumours identified include non-payment of salary, staff disengagement and overstaffing. The causes of rumours found out are lack of regular communication, change in administrative heads and uncertainty. The study further finds out that 104 respondents representing 30.1% of its respondents agree that social media are the channels through which rumour starts and spreads during change, and 113, 32.7% of the respondents agree that effective communication by management during change process is a strategy that can reduce anxiety and uncertainty that may lead to rumour in higher institutions in times of change. The study recommends that management of higher institutions should learn how to be transparent and maintain good relationship with employees through regular and effective communication especially during times of change.

Suggested Citation

  • Olanike Justinah OLUSOLA & Ibikunle Olayiwola AJISAFE & Omowumi Bukola OLASEINDE & Goodluck Tamarameiye LAYEFA, 2025. "Impacts of Effective Communication on Managing Rumour During Change in Higher Institutions in Ekiti State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(13), pages 150-158, April.
  • Handle: RePEc:bcp:journl:v:9:y:2025:i:13:p:150-158
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-9-issue-13/150-158.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/impacts-of-effective-communication-on-managing-rumour-during-change-in-higher-institutions-in-ekiti-state-nigeria/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    5. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    6. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    7. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    8. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    9. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    10. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    11. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    13. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    14. Zhu, He & Ma, Jing, 2019. "Analysis of SHIR rumor propagation in random heterogeneous networks with dynamic friendships," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 257-271.
    15. Ran, Maojie & Chen, Jiancu, 2021. "An information dissemination model based on positive and negative interference in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Huayan Pei & Guanghui Yan & Yaning Huang, 2023. "Impact of contact rate on epidemic spreading in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-7, April.
    18. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    19. Paluch, Robert & Gajewski, Łukasz G. & Suchecki, Krzysztof & Hołyst, Janusz A., 2021. "Impact of interactions between layers on source localization in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    20. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:9:y:2025:i:13:p:150-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.