IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp404-413.html
   My bibliography  Save this article

Effectively identifying multiple influential spreaders in term of the backward–forward propagation

Author

Listed:
  • Wang, Xiaojie
  • Zhang, Xue
  • Zhao, Chengli
  • Yi, Dongyun

Abstract

Identification of multiple influential seed spreaders is one of the most promising domain in the research area of complex networks, which is also called the influence maximization problem in sociology domains. In order to evaluate the spreading ability of nodes in networks, many centrality-based indices have been proposed and achieved relatively good results. Although these methods can be directly applied to identify a set of important nodes via top-k strategy, an internal defect largely restricts the performance of them. In most networks, the important nodes often tend to distribute closely, leading to a severe influence overlapping problem which is harmful to their collective influence. In this paper, we propose a heuristic strategy, namely the backward–forward propagation, to sequentially select multiple decentralized yet influential seed spreaders. The first step is to estimate the probability of ordinary nodes being contacted by seed spreaders in the network via the backward propagation. Then we utilize the forward propagation to approximately evaluate the spreading ability of all the ordinary nodes, and select the one with the largest influence to be a new seed spreader. We conduct the numerical analysis on both undirected and directed networks, and the results all show that the proposed method can outperform several centrality-based and heuristic benchmarks. Specially, further analysis demonstrates the stability and adaptivity of our method.

Suggested Citation

  • Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:404-413
    DOI: 10.1016/j.physa.2018.08.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118310240
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    2. Wang, Jia-zeng & Liu, Zeng-rong & Xu, Jianhua, 2007. "Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 715-721.
    3. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    4. Byungjoon Min, 2018. "Identifying an influential spreader from a single seed in complex networks via a message-passing approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(1), pages 1-6, January.
    5. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    6. Liu, Huan-Li & Ma, Chuang & Xiang, Bing-Bing & Tang, Ming & Zhang, Hai-Feng, 2018. "Identifying multiple influential spreaders based on generalized closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2237-2248.
    7. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    8. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    2. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    4. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    5. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    6. Zhong, Lin-Feng & Shang, Ming-Sheng & Chen, Xiao-Long & Cai, Shi-Ming, 2018. "Identifying the influential nodes via eigen-centrality from the differences and similarities of structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 77-82.
    7. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    8. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Zhong, Lin-Feng & Liu, Quan-Hui & Wang, Wei & Cai, Shi-Min, 2018. "Comprehensive influence of local and global characteristics on identifying the influential nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 78-84.
    10. Liu, Xiang-Chun & Zhu, Xu-Zhen & Tian, Hui & Zhang, Zeng-Ping & Wang, Wei, 2019. "Identifying localized influential spreaders of information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 92-97.
    11. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    12. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2018. "Bi-directional h-index: A new measure of node centrality in weighted and directed networks," Journal of Informetrics, Elsevier, vol. 12(1), pages 299-314.
    13. Wang, Ze & Gao, Xiangyun & Tang, Renwu & Liu, Xueyong & Sun, Qingru & Chen, Zhihua, 2019. "Identifying influential nodes based on fluctuation conduction network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 355-369.
    14. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    15. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    16. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    17. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    18. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    19. Yu, Hui & Cao, Xi & Liu, Zun & Li, Yongjun, 2017. "Identifying key nodes based on improved structural holes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 318-327.
    20. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:404-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.