IDEAS home Printed from https://ideas.repec.org/a/aph/ajpbhl/198777111435-1438_0.html
   My bibliography  Save this article

Comparison of tests used to distinguish smokers from nonsmokers

Author

Listed:
  • Jarvis, M.J.
  • Tunstall-Pedoe, H.
  • Feyerabend, C.
  • Vesey, C.
  • Saloojee, Y.

Abstract

Questionnaire and biochemical measures of smoking were studied in 211 hospital outpatients. Eleven different tests of smoke intake were compared for their ability to categorize smokers and nonsmokers correctly. The concentration of cotinine, whether measured in plasma, saliva, or urine, was the best indicator of smoking, with sensitivity of 96-97 per cent and specificity of 99-100 per cent. Thiocyanate provided the poorest discrimination. Carbon monoxide measured as blood carboxyhaemoglobin or in expired air gave sensitivity and specificity of about 90 per cent. Sensitivities of the tests were little affected by the presence among the claimed nonsmokers of a group of 21 'deceivers' who concealed their smoking. It is concluded that cotinine is the measure of choice, but for most clinical applications carbon monoxide provides an acceptable degree of discrimination and is considerably cheaper and simpler to apply.

Suggested Citation

  • Jarvis, M.J. & Tunstall-Pedoe, H. & Feyerabend, C. & Vesey, C. & Saloojee, Y., 1987. "Comparison of tests used to distinguish smokers from nonsmokers," American Journal of Public Health, American Public Health Association, vol. 77(11), pages 1435-1438.
  • Handle: RePEc:aph:ajpbhl:1987:77:11:1435-1438_0
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Warisa Thangjai & Suparat Niwitpong & Sa-Aat Niwitpong, 2017. "Confidence Intervals for Mean and Difference between Means of Normal Distributions with Unknown Coefficients of Variation," Mathematics, MDPI, vol. 5(3), pages 1-23, July.
    2. Ke-Ting Pan & Giovanni S. Leonardi & Marcella Ucci & Ben Croxford, 2021. "Can Exhaled Carbon Monoxide Be Used as a Marker of Exposure? A Cross-Sectional Study in Young Adults," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    3. Yen‐Chung Ho & Hsin‐Chien Lee & Mei‐Feng Lin & Hsiu‐Ju Chang, 2020. "Correlations among life stress, smoking behavior, and depressive symptoms in adolescents: A descriptive study with a mediating model," Nursing & Health Sciences, John Wiley & Sons, vol. 22(4), pages 949-957, December.
    4. Sungroul Kim, 2016. "Overview of Cotinine Cutoff Values for Smoking Status Classification," IJERPH, MDPI, vol. 13(12), pages 1-15, December.
    5. Mandeep S. Jassal & Cassia Lewis-Land & Richard E. Thompson & Arlene Butz, 2020. "Linkage of Maternal Caregiver Smoking Behaviors on Environmental and Clinical Outcomes of Children with Asthma: A Post-Hoc Analysis of a Financial Incentive Trial Targeting Reduction in Pediatric Toba," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    6. Kinga Polanska & Anna Krol & Pawel Kaluzny & Danuta Ligocka & Karolina Mikolajewska & Seif Shaheen & Robert Walton & Wojciech Hanke, 2016. "Estimation of Saliva Cotinine Cut-Off Points for Active and Passive Smoking during Pregnancy—Polish Mother and Child Cohort (REPRO_PL)," IJERPH, MDPI, vol. 13(12), pages 1-15, December.
    7. Sungroul Kim & Benjamin J. Apelberg & Erika Avila-Tang & Lisa Hepp & Dongmin Yun & Jonathan M. Samet & Patrick N. Breysse, 2014. "Utility and Cutoff Value of Hair Nicotine as a Biomarker of Long-Term Tobacco Smoke Exposure, Compared to Salivary Cotinine," IJERPH, MDPI, vol. 11(8), pages 1-15, August.
    8. Clément de Chaisemartin & Pierre‐Yves Geoffard & Anne‐Laurence le Faou, 2011. "Workplace smoking ban effects on unhappy smokers," Health Economics, John Wiley & Sons, Ltd., vol. 20(9), pages 1043-1055, September.
    9. Maria Paz Garcia-Portilla & Leticia Garcia-Alvarez & Pilar Alejandra Saiz & Eva Diaz-Mesa & Gonzalo Galvan & Fernando Sarramea & Josefa Garcia-Blanco & Edorta Elizagarate & Julio Bobes, 2013. "Effectiveness of a Multi-Component Smoking Cessation Support Programme (McSCSP) for Patients with Severe Mental Disorders: Study Design," IJERPH, MDPI, vol. 11(1), pages 1-17, December.
    10. Carla Cruvinel Pontes & Usuf Chikte & Faheema Kimmie-Dhansay & Rajiv T. Erasmus & Andre P. Kengne & Tandi E. Matsha, 2020. "Prevalence of Oral Mucosal Lesions and Relation to Serum Cotinine Levels—Findings from a Cross-Sectional Study in South Africa," IJERPH, MDPI, vol. 17(3), pages 1-10, February.
    11. Magdalena Chełchowska & Jadwiga Ambroszkiewicz & Joanna Gajewska & Joanna Mazur & Leszek Lewandowski & Marzanna Reśko-Zachara & Tomasz M. Maciejewski, 2018. "Influence of Active Exposure to Tobacco Smoke on Nitric Oxide Status of Pregnant Women," IJERPH, MDPI, vol. 15(12), pages 1-14, December.
    12. Florian Fischer, 2016. "Challenges in Creating Evidence in Environmental Health Risk Assessments: The Example of Second-Hand Smoke," Challenges, MDPI, vol. 7(1), pages 1-9, January.
    13. Carrieri, Vincenzo & Jones, Andrew M., 2018. "Intergenerational transmission of nicotine within families: Have e-cigarettes influenced passive smoking?," Economics & Human Biology, Elsevier, vol. 31(C), pages 83-93.
    14. Magdalena Chełchowska & Tomasz M. Maciejewski & Joanna Mazur & Joanna Gajewska & Anastasiya Zasimovich & Mariusz Ołtarzewski & Jadwiga Ambroszkiewicz, 2019. "Active Tobacco Smoke Exposure in Utero and Concentrations of Hepcidin and Selected Iron Parameters in Newborns," IJERPH, MDPI, vol. 16(11), pages 1-10, June.
    15. Magdalena Chełchowska & Joanna Gajewska & Tomasz M. Maciejewski & Joanna Mazur & Mariusz Ołtarzewski & Jadwiga Ambroszkiewicz, 2020. "Associations between Maternal and Fetal Levels of Total Adiponectin, High Molecular Weight Adiponectin, Selected Somatomedins, and Birth Weight of Infants of Smoking and Non-Smoking Mothers," IJERPH, MDPI, vol. 17(13), pages 1-14, July.
    16. Carrieri, V.; Jones, A.M.;, 2017. "Intergenerational transmission of nicotine within families: have e-cigarettes had an impact?," Health, Econometrics and Data Group (HEDG) Working Papers 17/03, HEDG, c/o Department of Economics, University of York.
    17. Hyun-Seung Lee & Ji-Hyun Cho & Young-Jin Lee & Do-Sim Park, 2022. "Effect of Second-Hand Smoke Exposure on Establishing Urinary Cotinine-Based Optimal Cut-Off Values for Smoking Status Classification in Korean Adults," IJERPH, MDPI, vol. 19(13), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aph:ajpbhl:1987:77:11:1435-1438_0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://www.apha.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.