IDEAS home Printed from https://ideas.repec.org/a/aio/manmar/vxixy2021i1p138-154.html
   My bibliography  Save this article

Improving The Decision-Making Process By Modeling Digital Twins In A Big Data Environment

Author

Listed:
  • Madalina CUC

    (Mihai Viteazul National Intelligence Academy)

Abstract

Moving to the Industry 4.0 stage. will lead to process automation and implicitly to the change of classical decision support systems with some based on realtime evaluation of processes, on the processing of large and varied volumes of data, in continuous flow and at high speeds, all these elements converging towards automation decision. This involves the creation of virtual models faithful to physical processes and products, models obtained through specific BIG DATA processes. The purpose of this paper is to describe a framework for applying decision support based on the model of digital twins in a BIG DATA ecosystem, the description of the defining elements specific to the decision cycle, the modeling and implementation of this concept.

Suggested Citation

  • Madalina CUC, 2021. "Improving The Decision-Making Process By Modeling Digital Twins In A Big Data Environment," Management and Marketing Journal, University of Craiova, Faculty of Economics and Business Administration, vol. 0(1), pages 138-154, May.
  • Handle: RePEc:aio:manmar:v:xix:y:2021:i:1:p:138-154
    as

    Download full text from publisher

    File URL: http://mnmk.ro/documents/2021_1/10-11-1-21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fromhold-Eisebith, Martina & Marschall, Philip & Peters, Robert & Thomes, Paul, 2021. "Torn between digitized future and context dependent past – How implementing ‘Industry 4.0’ production technologies could transform the German textile industry," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Shimin Liu & Pai Zheng & Jinsong Bao, 2024. "Digital Twin-based manufacturing system: a survey based on a novel reference model," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2517-2546, August.
    3. Angelo Corallo & Vito Del Vecchio & Marianna Lezzi & Paola Morciano, 2021. "Shop Floor Digital Twin in Smart Manufacturing: A Systematic Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
    4. Jiajun Zhou & Liang Gao & Chao Lu & Xifan Yao, 2025. "Collaborative optimization of manufacturing service allocation via multi-task transfer learning evolutionary approach," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1761-1779, March.
    5. Jielin Chen & Shuang Li & Hanwei Teng & Xiaolong Leng & Changping Li & Rendi Kurniawan & Tae Jo Ko, 2025. "Digital twin-driven real-time suppression of delamination damage in CFRP drilling," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1459-1476, February.
    6. Luis M. Camarinha-Matos & Andre Dionisio Rocha & Paula Graça, 2024. "Collaborative approaches in sustainable and resilient manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 499-519, February.
    7. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    8. Weifei Hu & Jinyi Shao & Qing Jiao & Chuxuan Wang & Jin Cheng & Zhenyu Liu & Jianrong Tan, 2023. "A new differentiable architecture search method for optimizing convolutional neural networks in the digital twin of intelligent robotic grasping," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2943-2961, October.
    9. Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
    10. Yujie Ma & Xueer Chen & Shuang Ma, 2024. "Optimal Sustainable Manufacturing for Product Family Architecture in Intelligent Manufacturing: A Hierarchical Joint Optimization Approach," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    11. Gurtej Singh Saini & AmirHossein Fallah & Pradeepkumar Ashok & Eric van Oort, 2022. "Digital Twins for Real-Time Scenario Analysis during Well Construction Operations," Energies, MDPI, vol. 15(18), pages 1-22, September.
    12. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    13. Mohammed M. Mabkhot & Pedro Ferreira & Antonio Maffei & Primož Podržaj & Maksymilian Mądziel & Dario Antonelli & Michele Lanzetta & Jose Barata & Eleonora Boffa & Miha Finžgar & Łukasz Paśko & Paolo M, 2021. "Mapping Industry 4.0 Enabling Technologies into United Nations Sustainability Development Goals," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    14. Maksim Dli & Andrei Puchkov & Valery Meshalkin & Ildar Abdeev & Rail Saitov & Rinat Abdeev, 2020. "Energy and Resource Efficiency in Apatite-Nepheline Ore Waste Processing Using the Digital Twin Approach," Energies, MDPI, vol. 13(21), pages 1-13, November.
    15. Kaibo Lu & Zhen Li & Andrew Longstaff, 2025. "In-process surface quality monitoring of the slender workpiece machining with digital twin approach," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2039-2053, March.
    16. Sebastian Lawrenz & Benjamin Leiding & Marit Elke Anke Mathiszig & Andreas Rausch & Mirco Schindler & Priyanka Sharma, 2021. "Implementing the Circular Economy by Tracing the Sustainable Impact," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    17. Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2025. "Intelligent G-code-based power prediction of ultra-precision CNC machine tools through 1DCNN-LSTM-Attention model," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1237-1260, February.
    18. Lan, Lan & Zhou, Zhifang, 2024. "Complementary or substitutive effects? The duality of digitalization and ESG on firm's innovation," Technology in Society, Elsevier, vol. 77(C).
    19. Paula Morella & María Pilar Lambán & Jesús Royo & Juan Carlos Sánchez & Jaime Latapia, 2023. "Technologies Associated with Industry 4.0 in Green Supply Chains: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    20. Yanzhi Zhao & Mingsi Zhao & Fengyu Shi, 2024. "Integrating Moral Education and Educational Information Technology: A Strategic Approach to Enhance Rural Teacher Training in Universities," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 15053-15093, September.

    More about this item

    Keywords

    management; decision-making processes; BIG DATA; artificial intelligence; Digital Twins;
    All these keywords.

    JEL classification:

    • M10 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - General
    • M20 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aio:manmar:v:xix:y:2021:i:1:p:138-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin Barbu (email available below). General contact details of provider: https://edirc.repec.org/data/fecraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.