IDEAS home Printed from https://ideas.repec.org/a/aif/journl/v5y2021i3p204-216.html
   My bibliography  Save this article

Impact of Deep Learning on Transfer Learning : A Review

Author

Listed:
  • Mohammed Jameel Barwary

    (Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq)

  • Adnan Mohsin Abdulazeez

    (Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.)

Abstract

Transfer learning and deep learning approaches have been utilised in several real-world applications and hierarchical systems for pattern recognition and classification tasks. However, in few of the real-world machine learning situations, this presumption does not sustain since there are instances where training data is costly or tough to gather and there is continually a necessity to produce high-performance learners competent with more easily attained data from diverse fields. The objective of this review is to determine more abstract qualities at the greater levels of the representation, by utilising deep learning to detach the variables in the outcomes, formally outline transfer learning, provide information on present solutions, and appraise applications employed in diverse facets of transfer learning and deep learning. This can be attained by rigorous literature exploration and discussion on all presently accessible techniques and prospective research studies on transfer learning solutions of independent as well as big data scale. The conclusions of this study could be an effectual platform directed at prospective directions for devising new deep learning patterns for different applications and dealing with the challenges concerned.

Suggested Citation

  • Mohammed Jameel Barwary & Adnan Mohsin Abdulazeez, 2021. "Impact of Deep Learning on Transfer Learning : A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 204-216.
  • Handle: RePEc:aif:journl:v:5:y:2021:i:3:p:204-216
    as

    Download full text from publisher

    File URL: https://ijsab.com/wp-content/uploads/698.pdf
    Download Restriction: no

    File URL: https://ijsab.com/volume-5-issue-3/3759
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huazhou & Chen, An & Xu, Lili & Xie, Hai & Qiao, Hanli & Lin, Qinyong & Cai, Ken, 2020. "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Agricultural Water Management, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaiyeop Lee & Ilho Kim, 2022. "Long-term stagnation monitoring using machine learning: comparison of artificial neural network model and convolution neural network model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2117-2130, May.
    2. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    3. Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
    4. Bashir Muhammad & Sher Khan, 2021. "Understanding the relationship between natural resources, renewable energy consumption, economic factors, globalization and CO2 emissions in developed and developing countries," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 138-156, May.
    5. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Mohammed Alkahtani & Qazi Salman Khalid & Muhammad Jalees & Muhammad Omair & Ghulam Hussain & Catalin Iulian Pruncu, 2021. "E-Agricultural Supply Chain Management Coupled with Blockchain Effect and Cooperative Strategies," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    7. Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. Yahya, Salah I. & Aghel, Babak, 2021. "Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms," Renewable Energy, Elsevier, vol. 177(C), pages 318-326.
    9. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    10. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aif:journl:v:5:y:2021:i:3:p:204-216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Farjana Rahman (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.