IDEAS home Printed from https://ideas.repec.org/a/ags/ijaeri/338405.html
   My bibliography  Save this article

RESPONSE OF MAIZE (Zea mays L.) GENOTYPES GROWTH CHARACTERS UNDER DROUGHT AND HEAT STRESS CONDITIONS EVALUATED IN SUDAN SAVANNA, NIGERIA

Author

Listed:
  • Yawale, M. A.
  • Daraja, Y. B.
  • Garko, M. S.
  • Dawaki, K. D.
  • Fulani, M. S.
  • Magashi A. I.
  • Sa’ad, A. M.
  • Abdussalam, S. S.

Abstract

Drought stress and heat stress are two major limiting factors affecting maize productivity in the tropical regions. High temperatures and changes in rainfall pattern can cause significant decline in maize yields under rain fed conditions with Africa being one of the worst affected areas. Heat tolerance can be accomplished through genetic management approach. The aim of the research is to assess the extent of variation in tolerance to drought stress and heat tolerant stress and their performance on growth and yield characters. The trials were conducted on genetic analysis of Maize (Zea mays L.) inbred lines under combined (drought and heat stress) conditions. The parental materials comprises eight inbred lines that were crossed in a partial diallel pattern; thereafter, the checks, parents and resultant F1 generations were evaluated at two locations, Kano University of Science and Technology and farmers field at Dambatta local government area Kano state during 2021 dry seasons. The experiment was laid out in a randomized complete block design and replicated three times. The results indicated the crossing of P4 X P9 and P3 X P4 to produce significantly to produce significantly better growth attributes like plant height ear height, plant aspect and grain yield. These parental lines might be used in maize breeding programs in Nigeria as sources of drought and or heat tolerance.

Suggested Citation

  • Yawale, M. A. & Daraja, Y. B. & Garko, M. S. & Dawaki, K. D. & Fulani, M. S. & Magashi A. I. & Sa’ad, A. M. & Abdussalam, S. S., 2023. "RESPONSE OF MAIZE (Zea mays L.) GENOTYPES GROWTH CHARACTERS UNDER DROUGHT AND HEAT STRESS CONDITIONS EVALUATED IN SUDAN SAVANNA, NIGERIA," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 3(4), April.
  • Handle: RePEc:ags:ijaeri:338405
    DOI: 10.22004/ag.econ.338405
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/338405/files/ijaer_09__13.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.338405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    2. Gammans, Matthew & Mérel, Pierre & Ortiz-Bobea, Ariel, 2016. "The impact of climate change on cereal yields: Statistical evidence from France," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236322, Agricultural and Applied Economics Association.
    3. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.
    4. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    5. Taoyuan Wei & Tianyi Zhang & Karianne De Bruin & Solveig Glomrød & Qinghua Shi, 2016. "Extreme Weather Impacts on Maize Yield: The Case of Shanxi Province in China," Sustainability, MDPI, vol. 9(1), pages 1-12, December.
    6. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    7. Khatri-Chhetri, Arun & Aggarwal, P.K. & Joshi, P.K. & Vyas, S., 2017. "Farmers' prioritization of climate-smart agriculture (CSA) technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 184-191.
    8. Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
    9. Pinki Mondal & Meha Jain & Andrew Robertson & Gillian Galford & Christopher Small & Ruth DeFries, 2014. "Winter crop sensitivity to inter-annual climate variability in central India," Climatic Change, Springer, vol. 126(1), pages 61-76, September.
    10. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    11. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    12. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    13. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    14. Mohd Idris Nor Diana & Nurul Atikah Zulkepli & Chamhuri Siwar & Muhd Ridzuan Zainol, 2022. "Farmers’ Adaptation Strategies to Climate Change in Southeast Asia: A Systematic Literature Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    15. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    16. Biraj Kanti Mondal & Satiprasad Sahoo, 2022. "Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9519-9568, July.
    17. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    18. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Senyolo, Mmapatla Precious & Long, Thomas B. & Omta, Onno, 2021. "Enhancing the adoption of climate-smart technologies using public-private partnerships: lessons from the WEMA case in South Africa," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
    20. Santosh Gupta & Baliram Yadav & Bibisha Timalsina & Ganesh G.C & Nirankar Bhuj & Puja Roka & Radhakrishna Bhandari, 2022. "Physiological, Morphological & Biochemical Response Of Wheat (Triticum Aestivum) Against Heat & Drought Stress And The Tolerance Mechanism - A Review," Reviews in Food and Agriculture (RFNA), Zibeline International Publishing, vol. 3(1), pages 43-47, September.

    More about this item

    Keywords

    Agricultural and Food Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijaeri:338405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://ijaer.in/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.