IDEAS home Printed from https://ideas.repec.org/a/ags/hukrgr/229424.html
   My bibliography  Save this article

Bioenergy Crops As New Components Of Rural And Agricultural Landscapes: Environmental And Social Impact, Biodiversity, Cultural Heritage And Economy

Author

Listed:
  • Némethy, Sándor
  • Walas, Bartłomiej

Abstract

Large scale cultivation of bioenergy crops can substantially alter the appearance and the ecology of rural and agricultural landscapes, which constitute a valuable asset of our cultural heritage. The ecosystems and the built heritage of agricultural landscapes require holistic management structures built on self-sustaining ecological cycles and the sustainable use of ecosystem services put into the context of economical and demographical conditions of local and regional development strategies. Furthermore, the natural and cultural heritage of rural landscapes can play an important role for boosting economic growth and social cohesion if protected and used with a long term sustainability approach. This is particularly important for those rural landscapes, where establishing large scale traditional monoculture of bio energy crops might threaten both previously well functioning agro-ecosystems and the cultural values of the agricultural landscapes. However, sensible cultivation of energy crops, particularly energy forests, in degraded, polluted areas or on territories of low soil quality may be beneficial and serve as means for ecological reconstruction and creation of new habitats. We propose to apply renewable energy based, landscape centered, sustainable micro-regional development strategies in rural areas, where ecologically acceptable level of bioenergy feedstock production supports not only organic agriculture including grey water irrigation and control of invasive species, but even the protection, reconstruction and sensible use of the built and intangible cultural heritage of the cultural landscape. ---------------------------------------------------------------------------------- A bioenergia termények nagybani művelése jelentősen megváltoztathatja a kulturális örökségünk értékes elemeit képező vidéki és mezőgazdasági tájak kinézetét és ökológiai viszonyait. A mezőgazdasági tájak ökoszisztémái és épített öröksége az önfenntartó ökociklusokra épülő, komplex menedzsment struktúrákat igényel, melyek egyaránt figyelembe veszik az ökoszisztéma szolgáltatások fenntartható hasznosítását továbbá a helyi és regionális fejlesztési stratégiák gazdasági és demográfiai feltételeit. A vidéki tájak természeti adottságai és kulturális öröksége jelentős szerepet játszhatnak a vidék gazdasági fellendítésében és a szociális kohézió erősítésében abban az esetben, ha biztosítjuk védelmüket és használatukat egy hosszú távú fenntarthatósági koncepció alkalmazásával. Ez különösen fontos lehet azokon a tájakon, ahol a bioenergia termények nagybani termesztése fenyegető lehet mind a korábban jól működő agro-ökoszisztémákra mind a mezőgazdasági tájak kulturális értékeire. Mindezek ellenére, a bioenergia terményeknek, különösen az energiaerdőknek a céltudatos telepítése csökkent értékű, szennyezett területeken vagy alacsony minőségű talajokon kifejezetten hasznos lehet, mint a fitoremediáció és új élőhelyek létrehozásának eszköze. Javasoljuk a megújuló energiákra épülő, kultúrtáj központú, fenntartható mikroregionális fejlesztési stratégiák alkalmazását a vidéki területeken, ahol a bioenergia alapanyagok termelése nem csupán a biológiailag tisztított szennyvizes öntözést is alkalmazó biogazdálkodást és az invazív fajok ellenőrzését teszi lehetővé, de biztosítja az adott kultúrtáj épített és eszmei örökségének védelmét, rekonstrukcióját és ésszerű használatát is.

Suggested Citation

  • Némethy, Sándor & Walas, Bartłomiej, 2015. "Bioenergy Crops As New Components Of Rural And Agricultural Landscapes: Environmental And Social Impact, Biodiversity, Cultural Heritage And Economy," Journal of Central European Green Innovation, Karoly Robert University College, vol. 3(Thematic ), pages 1-13.
  • Handle: RePEc:ags:hukrgr:229424
    DOI: 10.22004/ag.econ.229424
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/229424/files/N_methy%20_s%20tsa.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.229424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    3. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    4. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    5. Jonker, J.G.G. & Faaij, A.P.C., 2013. "Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production," Applied Energy, Elsevier, vol. 102(C), pages 461-475.
    6. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    7. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    8. Yahyaee, R. & Ghobadian, B. & Najafi, G., 2013. "Waste fish oil biodiesel as a source of renewable fuel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 312-319.
    9. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    10. Paiano, A. & Camaggio, G. & Lagioia, G., 2011. "Territorial level for biofuel production--Case study of an Italian region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2222-2231, June.
    11. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    12. Bocci, E. & Di Carlo, A. & Marcelo, D., 2009. "Power plant perspectives for sugarcane mills," Energy, Elsevier, vol. 34(5), pages 689-698.
    13. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    14. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    15. Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
    16. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    17. Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    19. Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
    20. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:hukrgr:229424. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/gtkrghu.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtkrghu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.