IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/31737.html
   My bibliography  Save this article

Stochastic efficiency analysis of alternative water conservation strategies

Author

Listed:
  • Grove, Bennie
  • Nel, F.
  • Maluleke, H.H.

Abstract

Stochastic efficiency with respect to an exponential utility function was used to determine utility-efficient water-conserving irrigation schedules for wheat and maize based on certainty equivalents. Total gross margin risk resulting from production risk of alternative deficit irrigation practices was quantified using an irrigation simulation model and stochastic budgeting procedures. Results showed increasing production variability with increasing levels of deficit irrigation, especially when rainfall has significant potential to contribute to the production process. Risk-averse decision makers are more willingly to adopt deficit irrigation schedules for maize due to increased effective rainfall. The conclusion is that the potential to use rainfall more effectively through deficit irrigation is a key variable determining adoption of deficit irrigation strategies by risk-averse decision makers. Localized weather forecasts may improve acceptance of deficit irrigation by risk-averse decision makers. The value of information for weather forecast might be low because of high risk premiums placed on full irrigation by risk-averse decision makers.

Suggested Citation

  • Grove, Bennie & Nel, F. & Maluleke, H.H., 2006. "Stochastic efficiency analysis of alternative water conservation strategies," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(1), pages 1-10, March.
  • Handle: RePEc:ags:agreko:31737
    DOI: 10.22004/ag.econ.31737
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/31737/files/45010050.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.31737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hardaker, J. Brian & Lien, Gudbrand D., 2003. "Stochastic Efficiency Analysis With Risk Aversion Bounds: A Simplified Approach," Working Papers 12954, University of New England, School of Economics.
    2. English, Marshall & Raja, Syed Navaid, 1996. "Perspectives on deficit irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grove, Bennie & Oosthuizen, Lukas Klopper, 2010. "Stochastic efficiency analysis of deficit irrigation with standard risk aversion," Agricultural Water Management, Elsevier, vol. 97(6), pages 792-800, June.
    2. Ding Xiuling & Lu Qian & Li Lipeng & Apurbo Sarkar, 2023. "The Impact of Technical Training on Farmers Adopting Water-Saving Irrigation Technology: An Empirical Evidence from China," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    3. Eihab M. Fathelrahman & James C. Ascough II & Dana L. Hoag & Robert W. Malone & Philip Heilman & Lori J. Wiles & Ramesh S. Kanwar, 2011. "Continuum of Risk Analysis Methods to Assess Tillage System Sustainability at the Experimental Plot Level," Sustainability, MDPI, vol. 3(7), pages 1-29, July.
    4. Rodriguez, Hector German & Popp, Jennie & Gbur, Edward & Chaubey, Indrajeet, 2011. "Environmental and economic impacts of reducing total phosphorous runoff in an agricultural watershed," Agricultural Systems, Elsevier, vol. 104(8), pages 623-633, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grove, Bennie, 2006. "Stochastic efficiency optimisation of alternative agricultural water use strategies," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(4), pages 1-15, December.
    2. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    3. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    4. Wang, Yaosheng & Liu, Fulai & Andersen, Mathias N. & Jensen, Christian R., 2010. "Carbon retention in the soil-plant system under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 419-424, December.
    5. Zand-Parsa, Sh. & Sepaskhah, A. R., 2001. "Optimal applied water and nitrogen for corn," Agricultural Water Management, Elsevier, vol. 52(1), pages 73-85, December.
    6. van Mellor, Thuy & Alexander, Corinne E. & Bledsoe, Larry & Krupke, Christian, 2006. "An Economic Analysis of Control of the Western Corn Rootworm Variant across Indiana," 2006 Annual meeting, July 23-26, Long Beach, CA 21264, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Li, Xiaoliang & Liu, Fulai & Li, Guitong & Lin, Qimei & Jensen, Christian R., 2010. "Soil microbial response, water and nitrogen use by tomato under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 414-418, December.
    9. Fox, P. & Rockstrom, J. & Barron, J., 2005. "Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya," Agricultural Systems, Elsevier, vol. 83(3), pages 231-250, March.
    10. Mintesinot, B. & Verplancke, H. & Van Ranst, E. & Mitiku, H., 2004. "Examining traditional irrigation methods, irrigation scheduling and alternate furrows irrigation on vertisols in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 64(1), pages 17-27, January.
    11. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    13. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    14. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    15. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    16. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    17. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    18. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    19. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    20. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:31737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.