IDEAS home Printed from https://ideas.repec.org/a/aes/icafee/v4y2015p305-325.html
   My bibliography  Save this article

The impact of environmental changes on food safety

Author

Listed:
  • Francesca-Magdalena Velciov

    (The Bucharest University of Economic Studies)

  • Razvan Murariu

    (The Bucharest University of Economic Studies)

Abstract

Changes in the global environment are recognized as one of the most serious ones facing the world today. Of these, agriculture is a pivotal domain, as it faces significant changes as a result of the need to increase global food supply whilst the availability of soil and water resources are declining and of the increasing threats from environmental change. Nevertheless, these transformations unveil abundant opportunities to develop and promote food and living systems that have greater environmental, economic and social elasticity to risk. It is clear that such opportunities to perfect forward-thinking and practical solutions to these changes will require the development of a range of technical and institutional innovations, founded on current multidisciplinary knowledge. As such, changes in the environment are a major challenge for agriculture and agricultural policy-making. Agriculture needs to address the double change of reducing its greenhouse gas emissions (GHGs) while adapting to projected impacts of environmental change. In a talk given to the MIT Enterprise Forum in 2003, Nobel Laureate Richard E. Smalley pinpointed the fact that the biggest problems that humanity will face over the next 50 years are Energy, Water, Food, Environment, Poverty, Terrorism and War, Disease, Education, Democracy and Population. The twofold aim of the present study is to summarize the main findings regarding some of these problems, with a particular focus on the changes in environmental conditions, and to provide an overview of the impact of these transformations facing the global food and agricultural system. The review studies focuses on expanding the research for some specific changes to the environment, as well as their impact on food safety.

Suggested Citation

  • Francesca-Magdalena Velciov & Razvan Murariu, 2015. "The impact of environmental changes on food safety," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 4, pages 305-325.
  • Handle: RePEc:aes:icafee:v:4:y:2015:p:305-325
    as

    Download full text from publisher

    File URL: http://www.cafee.ase.ro/wp-content/upload/2015edition/file2015(35).pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    2. Achoja, Felix Odemero & Enujeke, Emmanuel Chukudinife & Ogisi, Oraye Dicta & Overehirha, Rebecca Tega, 2020. "Multinomial Regression Analysis of Yam (Dioscorea Spp.) Consumers' Preferences and Varietal Diversification Pattern in Nigeria," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 10(02), January.
    3. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    4. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    5. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    6. repec:ags:ijag24:346816 is not listed on IDEAS
    7. Mounir Amdaoud, 2019. "Ressources naturelles, innovation et développement économique : vers une nouvelle approche," CEPN Working Papers 2019-06, Centre d'Economie de l'Université de Paris Nord.
    8. Yi Yao & Agnès Ducharne & Benjamin I. Cook & Steven J. Hertog & Kjetil Schanke Aas & Pedro F. Arboleda-Obando & Jonathan Buzan & Jeanne Colin & Maya Costantini & Bertrand Decharme & David M. Lawrence , 2025. "Impacts of irrigation expansion on moist-heat stress based on IRRMIP results," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    10. Bircol, Guilherme Augusto Carminato & Souza, Marcelo Pereira de & Fontes, Aurélio Teodoro & Chiarello, Adriano Garcia & Ranieri, Victor Eduardo Lima, 2018. "Planning by the rules: A fair chance for the environment in a land-use conflict area," Land Use Policy, Elsevier, vol. 76(C), pages 103-112.
    11. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    12. Fayaz Ahmad Lone & M. Imran Ganaie & Showkat A. Ganaie & M. Shafi Bhat & Javeed Ahmad Rather, 2023. "Drivers of agricultural land-use change in Kashmir valley - an application of mixed method approach," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    13. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Alemu, Aklilu W. & Beauchemin, Karen A. & Little, Shannan & Iravani, Majid & de Souza, Danielle Maia & McAllister, Tim A., 2020. "A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie," Ecosystem Services, Elsevier, vol. 45(C).
    14. Corbari, Chiara & Paciolla, Nicola & Rossi, Greta & Mancini, Marco, 2023. "A double two-sources energy-water balance model for improving evapotranspiration estimates and irrigation management in fruit trees fields," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Järnberg, Linn & Enfors Kautsky, Elin & Dagerskog, Linus & Olsson, Per, 2018. "Green niche actors navigating an opaque opportunity context: Prospects for a sustainable transformation of Ethiopian agriculture," Land Use Policy, Elsevier, vol. 71(C), pages 409-421.
    16. Tibor Sedláček & Pavel Horčička, 2019. "Proposal of updated XYZ system for the production of hybrid wheat seed," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 55(1), pages 35-38.
    17. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    18. Wolfgang Britz & Roberto Roson, 2019. "G-RDEM: A GTAP-Based Recursive Dynamic CGE Model for Long-Term Baseline Generation and Analysis," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 50-96, June.
    19. Sailesh Ranjitkar & Dengpan Bu & Mark Wijk & Ying Ma & Lu Ma & Lianshen Zhao & Jianmin Shi & Chousheng Liu & Jianchu Xu, 2020. "Will heat stress take its toll on milk production in China?," Climatic Change, Springer, vol. 161(4), pages 637-652, August.
    20. Baldos, Uris Lantz C. & Hertel, Thomas W., 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), October.
    21. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:icafee:v:4:y:2015:p:305-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Elena Preda (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.