IDEAS home Printed from https://ideas.repec.org/a/aen/journl/1999v20-04-a02.html
   My bibliography  Save this article

The Economics of Energy Market Transformation Programs

Author

Listed:
  • Richard Duke
  • Daniel M. Kammen

Abstract

This paper evaluates three energy-sector market transformation programs: the U.S. Environmental Protection Agency's Green Lights program to promote on-grid efficient lighting; the World Bank Group's new Photovoltaic Market Transformation Initiative; and the federal grain ethanol subsidy. We develop a benefit-cost model that uses experience curves to estimate unit cost reductions as a function of cumulative production. Accounting for dynamic feedback between the demand response and price reductions from production experience raises the benefit-cost ratio (BCR) of the first two programs substantially. The BCR of the ethanol program, however, is approximately zero, illustrating a technology for which subsidization was not justified. Our results support a broader role for market transformation programs to commercialize new environmentally attractive technologies, but the ethanol experience suggests moderately funding a broad portfolio composed of technologies that meet strict selection criteria.

Suggested Citation

  • Richard Duke & Daniel M. Kammen, 1999. "The Economics of Energy Market Transformation Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-64.
  • Handle: RePEc:aen:journl:1999v20-04-a02
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=1323
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    2. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    3. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    4. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    5. Duke, Richard D. & Jacobson, Arne & Kammen, Daniel M., 2002. "Photovoltaic module quality in the Kenyan solar home systems market," Energy Policy, Elsevier, vol. 30(6), pages 477-499, May.
    6. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    7. Hakan Çelıkkol & Fatma Köse, 2015. "SWOT analysis of Turkish Energy Market in the context of Electricity Market in the context of electricity market," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 4(2), pages 27-41.
    8. Sawhney, Aparna & Kahn, Matthew E., 2012. "Understanding cross-national trends in high-tech renewable power equipment exports to the United States," Energy Policy, Elsevier, vol. 46(C), pages 308-318.
    9. Spencer, Simon & Bredin, Don & Conlon, Thomas, 2018. "Energy and agricultural commodities revealed through hedging characteristics: Evidence from developing and mature markets," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 1-20.
    10. Fábio Ricardo Procópio de Araújo & Marcio Giannini Pereira & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Eduardo Janser de Azevedo Dantas, 2021. "Bigger Is Not Always Better: Review of Small Wind in Brazil," Energies, MDPI, vol. 14(4), pages 1-26, February.
    11. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
    12. Gregory F. Nemet, 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Working Papers 2006.143, Fondazione Eni Enrico Mattei.
    13. Payne, Adam & Duke, Richard & Williams, Robert H., 2001. "Accelerating residential PV expansion: supply analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 29(10), pages 787-800, August.
    14. D. Kline & L. Vimmerstedt & R. Benioff, 2004. "Clean energy technology transfer: A review of programs under the UNFCCC," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(1), pages 1-35, March.
    15. Martin Junginger & Wilfried van Sark & André Faaij (ed.), 2010. "Technological Learning in the Energy Sector," Books, Edward Elgar Publishing, number 13741.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:1999v20-04-a02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.