IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v15y2018i5p141-148.html
   My bibliography  Save this article

Soil Erosion Modeling Using GIS Based RUSEL Model in Gilgel Gibe-1 Catchment, South West Ethiopia

Author

Listed:
  • Gizaw Tesfaye
  • Degifie Tibebe

    (Ethiopian Institute of Agricultural Research, Ethiopia)

Abstract

This study was aimed to estimate soil loss in Gilgel Gibe-1 catchment by GIS-based RUSLE model and prioritize sub-watersheds for soil conservation planning. Both primary and secondary data from different sources were used in this study. The amount of soil loss from the catchment is estimated with GIS-based RUSLE model which uses the rainfall-runoff erosivity, soil erodibility, topographic effect, soil/surface coverage and land management practice of the catchment as an input. The result of the study shows the mean annual soil loss of the catchment is 62.98 t ha-1year-1 which is about 26.56x106 ton year-1. Erosion ‘hotspot’ areas are identified and prioritized on the bases of soil loss. Accordingly, SW4, SW3, SW5, SW6, SW9, SW8, SW7, SW2, and SW1 got 1 to 9 priority level respectively.

Suggested Citation

  • Gizaw Tesfaye & Degifie Tibebe, 2018. "Soil Erosion Modeling Using GIS Based RUSEL Model in Gilgel Gibe-1 Catchment, South West Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 15(5), pages 141-148, December.
  • Handle: RePEc:adp:ijesnr:v:15:y:2018:i:5:p:141-148
    DOI: 10.19080/IJESNR.2018.15.555923
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.555923.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.555923.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2018.15.555923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanjay Jain & Sudhir Kumar & Jose Varghese, 2001. "Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(1), pages 41-54, February.
    2. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.
    2. V. Chowdary & D. Ramakrishnan & Y. Srivastava & Vinu Chandran & A. Jeyaram, 2009. "Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1581-1602, June.
    3. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    4. Sreenivasulu Vemu & Udaya Pinnamaneni, 2011. "Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1299-1315, December.
    5. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    6. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    7. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    8. Pradeep Mishra & Zhi-Qiang Deng, 2009. "Sediment TMDL Development for the Amite River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 839-852, March.
    9. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    10. V. Prasannakumar & H. Vijith & N. Geetha & R. Shiny, 2011. "Regional Scale Erosion Assessment of a Sub-tropical Highland Segment in the Western Ghats of Kerala, South India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3715-3727, November.
    11. Shan-e-hyder Soomro & Caihong Hu & Muhammad Waseem Boota & Zubair Ahmed & Liu Chengshuai & Han Zhenyue & Li Xiang & Mairaj Hyder Alias Aamir Soomro, 2022. "River Flood Susceptibility and Basin Maturity Analyzed Using a Coupled Approach of Geo-morphometric Parameters and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2131-2160, May.
    12. Shiksha Bastola & Sanghyup Lee & Yongchul Shin & Younghun Jung, 2020. "An Assessment of Environmental Impacts on the Ecosystem Services: Study on the Bagmati Basin of Nepal," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    13. Dhananjay Deshmukh & Umesh Chaube & Sanjay Tignath, 2011. "Development of Geomorphological Permeability Index (GPI) for Assessment of Ground Water Availability and Watershed Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3747-3768, November.
    14. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    15. Ahsan Raza & Hella Ahrends & Muhammad Habib-Ur-Rahman & Thomas Gaiser, 2021. "Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops," Land, MDPI, vol. 10(4), pages 1-35, April.
    16. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    17. Matthew Yarrow & Antonio Tironi & Alejandro Ramírez & Víctor Marín, 2008. "An Applied Assessment Model to Evaluate the Socioeconomic Impact of Water Quality Regulations in Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1531-1543, November.
    18. Paulo de Oliveira & Teodorico Sobrinho & Dulce Rodrigues & Elói Panachuki, 2011. "Erosion Risk Mapping Applied to Environmental Zoning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 1021-1036, February.
    19. Ferreira, Vera & Panagopoulos, Thomas, 2012. "Predicting soil erosion risk at the Alqueva dam watershed," Spatial and Organizational Dynamics Discussion Papers 2012-4, CIEO-Research Centre for Spatial and Organizational Dynamics, University of Algarve.
    20. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:15:y:2018:i:5:p:141-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.