IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v15y2001i1p41-54.html
   My bibliography  Save this article

Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique

Author

Listed:
  • Sanjay Jain
  • Sudhir Kumar
  • Jose Varghese

Abstract

The fragile ecosystem of the Himalayas has been an increasing cause of concern to environmentalists and water resources planners. The steep slopes in the Himalayas along with depletedforest cover, as well as high seismicity have been major factors in soil erosion and sedimentation in river reaches. Prediction ofsoil erosion is a necessity if adequate provision is to be madein the design of conservation structures to offset the ill effects of sedimentation during their lifetime.In the present study, two different soil erosion models, i.e. theMorgan model and Universal Soil Loss Equation (USLE) model, have been used to estimate soil erosion from a Himalayan watershed.Parameters required for both models were generated using remotesensing and ancillary data in GIS mode. The soil erosion estimated by Morgan model is in the order of 2200 t km -2 yr -1 and is within the limits reported for this region.The soil erosion estimated by USLE gives a higher rate. Therefore, for the present study the Morgan model gives, for area located in hilly terrain, fairly good results. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • Sanjay Jain & Sudhir Kumar & Jose Varghese, 2001. "Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(1), pages 41-54, February.
  • Handle: RePEc:spr:waterr:v:15:y:2001:i:1:p:41-54
    DOI: 10.1023/A:1012246029263
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1012246029263
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1012246029263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    erosion; GIS; Morgan; remote sensing; USLE;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:15:y:2001:i:1:p:41-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.